aboutsummaryrefslogtreecommitdiffstats
path: root/library/cpp/histogram/adaptive
diff options
context:
space:
mode:
authorsvirg <svirg@yandex-team.ru>2022-02-10 16:50:56 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:50:56 +0300
commitd7b26a7860e235a7b00891e1ffbc256c7c976f7d (patch)
tree5d5cb817648f650d76cf1076100726fd9b8448e8 /library/cpp/histogram/adaptive
parent6b417b6bdff55c365f5835bb18c5a8053b975801 (diff)
downloadydb-d7b26a7860e235a7b00891e1ffbc256c7c976f7d.tar.gz
Restoring authorship annotation for <svirg@yandex-team.ru>. Commit 2 of 2.
Diffstat (limited to 'library/cpp/histogram/adaptive')
-rw-r--r--library/cpp/histogram/adaptive/adaptive_histogram.cpp114
-rw-r--r--library/cpp/histogram/adaptive/adaptive_histogram.h8
-rw-r--r--library/cpp/histogram/adaptive/auto_histogram.h20
-rw-r--r--library/cpp/histogram/adaptive/block_histogram.cpp452
-rw-r--r--library/cpp/histogram/adaptive/block_histogram.h132
-rw-r--r--library/cpp/histogram/adaptive/common.cpp34
-rw-r--r--library/cpp/histogram/adaptive/common.h20
-rw-r--r--library/cpp/histogram/adaptive/fixed_bin_histogram.cpp8
-rw-r--r--library/cpp/histogram/adaptive/fixed_bin_histogram.h2
-rw-r--r--library/cpp/histogram/adaptive/histogram.h2
-rw-r--r--library/cpp/histogram/adaptive/protos/histo.proto2
-rw-r--r--library/cpp/histogram/adaptive/ya.make12
12 files changed, 403 insertions, 403 deletions
diff --git a/library/cpp/histogram/adaptive/adaptive_histogram.cpp b/library/cpp/histogram/adaptive/adaptive_histogram.cpp
index d5d2f0c80a..cbfc494021 100644
--- a/library/cpp/histogram/adaptive/adaptive_histogram.cpp
+++ b/library/cpp/histogram/adaptive/adaptive_histogram.cpp
@@ -17,13 +17,13 @@ namespace NKiwiAggr {
}
TAdaptiveHistogram::TAdaptiveHistogram(const THistogram& histo, size_t defaultIntervals, ui64 defaultId, TQualityFunction qualityFunc)
- : TAdaptiveHistogram(defaultIntervals, defaultId, qualityFunc)
+ : TAdaptiveHistogram(defaultIntervals, defaultId, qualityFunc)
{
FromProto(histo);
}
TAdaptiveHistogram::TAdaptiveHistogram(IHistogram* histo, size_t defaultIntervals, ui64 defaultId, TQualityFunction qualityFunc)
- : TAdaptiveHistogram(defaultIntervals, defaultId, qualityFunc)
+ : TAdaptiveHistogram(defaultIntervals, defaultId, qualityFunc)
{
TAdaptiveHistogram* adaptiveHisto = dynamic_cast<TAdaptiveHistogram*>(histo);
if (!adaptiveHisto) {
@@ -42,7 +42,7 @@ namespace NKiwiAggr {
}
}
- TQualityFunction TAdaptiveHistogram::GetQualityFunc() {
+ TQualityFunction TAdaptiveHistogram::GetQualityFunc() {
return CalcQuality;
}
@@ -67,58 +67,58 @@ namespace NKiwiAggr {
PrecomputedBins.clear();
}
- void TAdaptiveHistogram::Merge(const THistogram& histo, double multiplier) {
- if (!IsValidFloat(histo.GetMinValue()) || !IsValidFloat(histo.GetMaxValue())) {
+ void TAdaptiveHistogram::Merge(const THistogram& histo, double multiplier) {
+ if (!IsValidFloat(histo.GetMinValue()) || !IsValidFloat(histo.GetMaxValue())) {
fprintf(stderr, "Merging in histogram id %lu: skip bad histo with minvalue %f maxvalue %f\n", Id, histo.GetMinValue(), histo.GetMaxValue());
- return;
- }
- if (histo.FreqSize() == 0) {
- return; // skip empty histos
- }
- if (histo.GetType() == HT_ADAPTIVE_DISTANCE_HISTOGRAM ||
- histo.GetType() == HT_ADAPTIVE_WEIGHT_HISTOGRAM ||
- histo.GetType() == HT_ADAPTIVE_WARD_HISTOGRAM ||
+ return;
+ }
+ if (histo.FreqSize() == 0) {
+ return; // skip empty histos
+ }
+ if (histo.GetType() == HT_ADAPTIVE_DISTANCE_HISTOGRAM ||
+ histo.GetType() == HT_ADAPTIVE_WEIGHT_HISTOGRAM ||
+ histo.GetType() == HT_ADAPTIVE_WARD_HISTOGRAM ||
histo.GetType() == HT_ADAPTIVE_HISTOGRAM)
{
Y_VERIFY(histo.FreqSize() == histo.PositionSize(), "Corrupted histo");
- for (size_t j = 0; j < histo.FreqSize(); ++j) {
- double value = histo.GetPosition(j);
- double weight = histo.GetFreq(j);
- if (!IsValidFloat(value) || !IsValidFloat(weight)) {
+ for (size_t j = 0; j < histo.FreqSize(); ++j) {
+ double value = histo.GetPosition(j);
+ double weight = histo.GetFreq(j);
+ if (!IsValidFloat(value) || !IsValidFloat(weight)) {
fprintf(stderr, "Merging in histogram id %lu: skip bad value %f weight %f\n", Id, value, weight);
- continue;
+ continue;
}
- Add(value, weight * multiplier);
- }
-
- MinValue = Min(MinValue, histo.GetMinValue());
- MaxValue = Max(MaxValue, histo.GetMaxValue());
- } else if (histo.GetType() == HT_FIXED_BIN_HISTOGRAM) {
- double pos = histo.GetMinValue() + histo.GetBinRange() / 2.0;
- for (size_t j = 0; j < histo.FreqSize(); ++j) {
- double weight = histo.GetFreq(j);
- if (!IsValidFloat(pos) || !IsValidFloat(weight)) {
+ Add(value, weight * multiplier);
+ }
+
+ MinValue = Min(MinValue, histo.GetMinValue());
+ MaxValue = Max(MaxValue, histo.GetMaxValue());
+ } else if (histo.GetType() == HT_FIXED_BIN_HISTOGRAM) {
+ double pos = histo.GetMinValue() + histo.GetBinRange() / 2.0;
+ for (size_t j = 0; j < histo.FreqSize(); ++j) {
+ double weight = histo.GetFreq(j);
+ if (!IsValidFloat(pos) || !IsValidFloat(weight)) {
fprintf(stderr, "Merging in histogram id %lu: skip bad value %f weight %f\n", Id, pos, weight);
pos += histo.GetBinRange();
- continue;
+ continue;
}
- Add(pos, weight * multiplier);
- pos += histo.GetBinRange();
- }
+ Add(pos, weight * multiplier);
+ pos += histo.GetBinRange();
+ }
- MinValue = Min(MinValue, histo.GetMinValue());
- MaxValue = Max(MaxValue, histo.GetMaxValue());
- } else {
- ythrow yexception() << "Unknown THistogram type";
+ MinValue = Min(MinValue, histo.GetMinValue());
+ MaxValue = Max(MaxValue, histo.GetMaxValue());
+ } else {
+ ythrow yexception() << "Unknown THistogram type";
}
}
void TAdaptiveHistogram::Merge(const TVector<THistogram>& histogramsToMerge) {
- for (size_t i = 0; i < histogramsToMerge.size(); ++i) {
- Merge(histogramsToMerge[i], 1.0);
- }
- }
-
+ for (size_t i = 0; i < histogramsToMerge.size(); ++i) {
+ Merge(histogramsToMerge[i], 1.0);
+ }
+ }
+
void TAdaptiveHistogram::Merge(TVector<IHistogramPtr> histogramsToMerge) {
TVector<IHistogramPtr> histogramsToMergeRepacked(0);
TVector<TAdaptiveHistogram*> histograms(0);
@@ -182,19 +182,19 @@ namespace NKiwiAggr {
void TAdaptiveHistogram::FromProto(const THistogram& histo) {
Y_VERIFY(histo.HasType(), "Attempt to parse TAdaptiveHistogram from THistogram protobuf with no Type field set");
;
- switch (histo.GetType()) { // check that histogram type could be deduced
- case HT_ADAPTIVE_DISTANCE_HISTOGRAM:
- case HT_ADAPTIVE_WEIGHT_HISTOGRAM:
- case HT_ADAPTIVE_WARD_HISTOGRAM:
- break; // ok
- case HT_ADAPTIVE_HISTOGRAM:
+ switch (histo.GetType()) { // check that histogram type could be deduced
+ case HT_ADAPTIVE_DISTANCE_HISTOGRAM:
+ case HT_ADAPTIVE_WEIGHT_HISTOGRAM:
+ case HT_ADAPTIVE_WARD_HISTOGRAM:
+ break; // ok
+ case HT_ADAPTIVE_HISTOGRAM:
if (CalcQuality != nullptr)
- break; // ok
+ break; // ok
[[fallthrough]];
default: // not ok
- ythrow yexception() << "Attempt to parse TAdaptiveHistogram from THistogram protobuf record of type = " << (ui32)histo.GetType();
+ ythrow yexception() << "Attempt to parse TAdaptiveHistogram from THistogram protobuf record of type = " << (ui32)histo.GetType();
}
-
+
if (histo.FreqSize() != histo.PositionSize()) {
ythrow yexception() << "Attempt to parse TAdaptiveHistogram from THistogram protobuf record where FreqSize != PositionSize. FreqSize == " << (ui32)histo.FreqSize() << ", PositionSize == " << (ui32)histo.PositionSize();
}
@@ -203,8 +203,8 @@ namespace NKiwiAggr {
CalcQuality = CalcDistanceQuality;
} else if (histo.GetType() == HT_ADAPTIVE_WEIGHT_HISTOGRAM) {
CalcQuality = CalcWeightQuality;
- } else if (histo.GetType() == HT_ADAPTIVE_WARD_HISTOGRAM) {
- CalcQuality = CalcWardQuality;
+ } else if (histo.GetType() == HT_ADAPTIVE_WARD_HISTOGRAM) {
+ CalcQuality = CalcWardQuality;
} else {
ythrow yexception() << "Attempt to parse an HT_ADAPTIVE_HISTOGRAM without default quality function";
}
@@ -236,8 +236,8 @@ namespace NKiwiAggr {
histo.SetType(HT_ADAPTIVE_DISTANCE_HISTOGRAM);
} else if (CalcQuality == CalcWeightQuality) {
histo.SetType(HT_ADAPTIVE_WEIGHT_HISTOGRAM);
- } else if (CalcQuality == CalcWardQuality) {
- histo.SetType(HT_ADAPTIVE_WARD_HISTOGRAM);
+ } else if (CalcQuality == CalcWardQuality) {
+ histo.SetType(HT_ADAPTIVE_WARD_HISTOGRAM);
} else {
histo.SetType(HT_ADAPTIVE_HISTOGRAM);
}
@@ -448,9 +448,9 @@ namespace NKiwiAggr {
if (!histo) {
ythrow yexception() << "Attempt to create TAdaptiveHistogram from a NULL pointer";
}
- if (CalcQuality == CalcWardQuality) {
- ythrow yexception() << "Not implemented";
- } else if (CalcQuality != CalcDistanceQuality && CalcQuality != CalcWeightQuality) {
+ if (CalcQuality == CalcWardQuality) {
+ ythrow yexception() << "Not implemented";
+ } else if (CalcQuality != CalcDistanceQuality && CalcQuality != CalcWeightQuality) {
ythrow yexception() << "Attempt to create TAdaptiveHistogram from a pointer without default CalcQuality";
}
Id = histo->GetId();
diff --git a/library/cpp/histogram/adaptive/adaptive_histogram.h b/library/cpp/histogram/adaptive/adaptive_histogram.h
index b8323890d0..fa8f48433f 100644
--- a/library/cpp/histogram/adaptive/adaptive_histogram.h
+++ b/library/cpp/histogram/adaptive/adaptive_histogram.h
@@ -1,7 +1,7 @@
#pragma once
#include "histogram.h"
-#include "common.h"
+#include "common.h"
#include <library/cpp/histogram/adaptive/protos/histo.pb.h>
@@ -124,8 +124,8 @@ namespace NKiwiAggr {
}
};
- typedef TDefinedAdaptiveHistogram<CalcDistanceQuality> TAdaptiveDistanceHistogram;
- typedef TDefinedAdaptiveHistogram<CalcWeightQuality> TAdaptiveWeightHistogram;
- typedef TDefinedAdaptiveHistogram<CalcWardQuality> TAdaptiveWardHistogram;
+ typedef TDefinedAdaptiveHistogram<CalcDistanceQuality> TAdaptiveDistanceHistogram;
+ typedef TDefinedAdaptiveHistogram<CalcWeightQuality> TAdaptiveWeightHistogram;
+ typedef TDefinedAdaptiveHistogram<CalcWardQuality> TAdaptiveWardHistogram;
}
diff --git a/library/cpp/histogram/adaptive/auto_histogram.h b/library/cpp/histogram/adaptive/auto_histogram.h
index be21c39b19..9fdf0b9abe 100644
--- a/library/cpp/histogram/adaptive/auto_histogram.h
+++ b/library/cpp/histogram/adaptive/auto_histogram.h
@@ -54,10 +54,10 @@ namespace NKiwiAggr {
HistogramImpl->Add(histoRec);
}
- virtual void Merge(const THistogram& histo, double multiplier) {
- HistogramImpl->Merge(histo, multiplier);
- }
-
+ virtual void Merge(const THistogram& histo, double multiplier) {
+ HistogramImpl->Merge(histo, multiplier);
+ }
+
virtual void Merge(const TVector<THistogram>& histogramsToMerge) {
HistogramImpl->Merge(histogramsToMerge);
}
@@ -73,14 +73,14 @@ namespace NKiwiAggr {
virtual void FromProto(const THistogram& histo) {
if (!histo.HasType() || histo.GetType() == HT_FIXED_BIN_HISTOGRAM) {
HistogramImpl.Reset(new TFixedBinHistogram(histo, Intervals, Id));
- } else if (histo.GetType() == HT_ADAPTIVE_DISTANCE_HISTOGRAM) {
+ } else if (histo.GetType() == HT_ADAPTIVE_DISTANCE_HISTOGRAM) {
HistogramImpl.Reset(new TAdaptiveDistanceHistogram(histo, Intervals, Id));
- } else if (histo.GetType() == HT_ADAPTIVE_WEIGHT_HISTOGRAM) {
+ } else if (histo.GetType() == HT_ADAPTIVE_WEIGHT_HISTOGRAM) {
HistogramImpl.Reset(new TAdaptiveWeightHistogram(histo, Intervals, Id));
- } else if (histo.GetType() == HT_ADAPTIVE_WARD_HISTOGRAM) {
- HistogramImpl.Reset(new TAdaptiveWardHistogram(histo, Intervals, Id));
- } else {
- ythrow yexception() << "Can't parse TAutoHistogram from a THistogram of type " << (ui32)histo.GetType();
+ } else if (histo.GetType() == HT_ADAPTIVE_WARD_HISTOGRAM) {
+ HistogramImpl.Reset(new TAdaptiveWardHistogram(histo, Intervals, Id));
+ } else {
+ ythrow yexception() << "Can't parse TAutoHistogram from a THistogram of type " << (ui32)histo.GetType();
}
}
diff --git a/library/cpp/histogram/adaptive/block_histogram.cpp b/library/cpp/histogram/adaptive/block_histogram.cpp
index 5f6063593f..6586d13ff6 100644
--- a/library/cpp/histogram/adaptive/block_histogram.cpp
+++ b/library/cpp/histogram/adaptive/block_histogram.cpp
@@ -1,4 +1,4 @@
-#include "block_histogram.h"
+#include "block_histogram.h"
#include <library/cpp/histogram/adaptive/protos/histo.pb.h>
@@ -6,7 +6,7 @@
#include <util/generic/yexception.h>
#include <util/generic/intrlist.h>
#include <util/generic/ptr.h>
-#include <util/generic/queue.h>
+#include <util/generic/queue.h>
#include <util/generic/ymath.h>
#include <util/string/printf.h>
@@ -77,15 +77,15 @@ namespace {
}
namespace NKiwiAggr {
- ///////////////////
- // TBlockHistogram
- ///////////////////
+ ///////////////////
+ // TBlockHistogram
+ ///////////////////
- TBlockHistogram::TBlockHistogram(EHistogramType type, TQualityFunction calcQuality,
+ TBlockHistogram::TBlockHistogram(EHistogramType type, TQualityFunction calcQuality,
size_t intervals, ui64 id, size_t shrinkSize)
- : Type(type)
- , CalcQuality(calcQuality)
- , Intervals(intervals)
+ : Type(type)
+ , CalcQuality(calcQuality)
+ , Intervals(intervals)
, ShrinkSize(shrinkSize)
, PrevSize(0)
, Id(id)
@@ -96,7 +96,7 @@ namespace NKiwiAggr {
CorrectShrinkSize();
}
- void TBlockHistogram::Clear() {
+ void TBlockHistogram::Clear() {
PrevSize = 0;
Sum = 0.0;
MinValue = 0.0;
@@ -104,13 +104,13 @@ namespace NKiwiAggr {
Bins.clear();
}
- void TBlockHistogram::Add(const THistoRec& rec) {
+ void TBlockHistogram::Add(const THistoRec& rec) {
if (!rec.HasId() || rec.GetId() == Id) {
Add(rec.GetValue(), rec.GetWeight());
}
}
- void TBlockHistogram::Add(double value, double weight) {
+ void TBlockHistogram::Add(double value, double weight) {
if (!IsValidFloat(value) || !IsValidFloat(weight)) {
ythrow yexception() << Sprintf("Histogram id %lu: bad value %f weight %f", Id, value, weight);
}
@@ -122,9 +122,9 @@ namespace NKiwiAggr {
if (Bins.empty()) {
MinValue = value;
MaxValue = value;
- } else {
- MinValue = Min(MinValue, value);
- MaxValue = Max(MaxValue, value);
+ } else {
+ MinValue = Min(MinValue, value);
+ MaxValue = Max(MaxValue, value);
}
Sum += weight;
@@ -136,64 +136,64 @@ namespace NKiwiAggr {
Bins.push_back(TWeightedValue(value, weight));
}
- void TBlockHistogram::Merge(const THistogram& histo, double multiplier) {
- if (!IsValidFloat(histo.GetMinValue()) || !IsValidFloat(histo.GetMaxValue())) {
+ void TBlockHistogram::Merge(const THistogram& histo, double multiplier) {
+ if (!IsValidFloat(histo.GetMinValue()) || !IsValidFloat(histo.GetMaxValue())) {
fprintf(stderr, "Merging in histogram id %lu: skip bad histo with minvalue %f maxvalue %f\n", Id, histo.GetMinValue(), histo.GetMaxValue());
- return;
- }
- if (histo.FreqSize() == 0) {
- return; // skip empty histos
- }
- if (histo.GetType() == HT_ADAPTIVE_DISTANCE_HISTOGRAM ||
- histo.GetType() == HT_ADAPTIVE_WEIGHT_HISTOGRAM ||
- histo.GetType() == HT_ADAPTIVE_WARD_HISTOGRAM ||
+ return;
+ }
+ if (histo.FreqSize() == 0) {
+ return; // skip empty histos
+ }
+ if (histo.GetType() == HT_ADAPTIVE_DISTANCE_HISTOGRAM ||
+ histo.GetType() == HT_ADAPTIVE_WEIGHT_HISTOGRAM ||
+ histo.GetType() == HT_ADAPTIVE_WARD_HISTOGRAM ||
histo.GetType() == HT_ADAPTIVE_HISTOGRAM)
{
Y_VERIFY(histo.FreqSize() == histo.PositionSize(), "Corrupted histo");
- for (size_t j = 0; j < histo.FreqSize(); ++j) {
- double value = histo.GetPosition(j);
- double weight = histo.GetFreq(j);
- if (!IsValidFloat(value) || !IsValidFloat(weight)) {
+ for (size_t j = 0; j < histo.FreqSize(); ++j) {
+ double value = histo.GetPosition(j);
+ double weight = histo.GetFreq(j);
+ if (!IsValidFloat(value) || !IsValidFloat(weight)) {
fprintf(stderr, "Merging in histogram id %lu: skip bad value %f weight %f\n", Id, value, weight);
- continue;
+ continue;
}
- Add(value, weight * multiplier);
- }
-
- MinValue = Min(MinValue, histo.GetMinValue());
- MaxValue = Max(MaxValue, histo.GetMaxValue());
- } else if (histo.GetType() == HT_FIXED_BIN_HISTOGRAM) {
- double pos = histo.GetMinValue() + histo.GetBinRange() / 2.0;
- for (size_t j = 0; j < histo.FreqSize(); ++j) {
- double weight = histo.GetFreq(j);
- if (!IsValidFloat(pos) || !IsValidFloat(weight)) {
+ Add(value, weight * multiplier);
+ }
+
+ MinValue = Min(MinValue, histo.GetMinValue());
+ MaxValue = Max(MaxValue, histo.GetMaxValue());
+ } else if (histo.GetType() == HT_FIXED_BIN_HISTOGRAM) {
+ double pos = histo.GetMinValue() + histo.GetBinRange() / 2.0;
+ for (size_t j = 0; j < histo.FreqSize(); ++j) {
+ double weight = histo.GetFreq(j);
+ if (!IsValidFloat(pos) || !IsValidFloat(weight)) {
fprintf(stderr, "Merging in histogram id %lu: skip bad value %f weight %f\n", Id, pos, weight);
pos += histo.GetBinRange();
- continue;
+ continue;
}
- Add(pos, weight * multiplier);
- pos += histo.GetBinRange();
- }
+ Add(pos, weight * multiplier);
+ pos += histo.GetBinRange();
+ }
- MinValue = Min(MinValue, histo.GetMinValue());
- MaxValue = Max(MaxValue, histo.GetMaxValue());
- } else {
- ythrow yexception() << "Unknown THistogram type";
+ MinValue = Min(MinValue, histo.GetMinValue());
+ MaxValue = Max(MaxValue, histo.GetMaxValue());
+ } else {
+ ythrow yexception() << "Unknown THistogram type";
}
}
void TBlockHistogram::Merge(const TVector<THistogram>& histogramsToMerge) {
- for (size_t i = 0; i < histogramsToMerge.size(); ++i) {
- Merge(histogramsToMerge[i], 1.0);
- }
- }
-
+ for (size_t i = 0; i < histogramsToMerge.size(); ++i) {
+ Merge(histogramsToMerge[i], 1.0);
+ }
+ }
+
void TBlockHistogram::Merge(TVector<IHistogramPtr> histogramsToMerge) {
Y_UNUSED(histogramsToMerge);
ythrow yexception() << "IHistogram::Merge(TVector<IHistogramPtr>) is not defined for TBlockHistogram";
}
- void TBlockHistogram::Multiply(double factor) {
+ void TBlockHistogram::Multiply(double factor) {
if (!IsValidFloat(factor) || factor <= 0) {
ythrow yexception() << "Not valid factor in IHistogram::Multiply(): " << factor;
}
@@ -203,21 +203,21 @@ namespace NKiwiAggr {
}
}
- void TBlockHistogram::FromProto(const THistogram& histo) {
+ void TBlockHistogram::FromProto(const THistogram& histo) {
Y_VERIFY(histo.HasType(), "Attempt to parse TBlockHistogram from THistogram protobuf with no Type field set");
;
- switch (histo.GetType()) { // check that histogram type is correct
- case HT_ADAPTIVE_DISTANCE_HISTOGRAM:
- case HT_ADAPTIVE_WEIGHT_HISTOGRAM:
- case HT_ADAPTIVE_WARD_HISTOGRAM:
- case HT_ADAPTIVE_HISTOGRAM:
- break; // ok
+ switch (histo.GetType()) { // check that histogram type is correct
+ case HT_ADAPTIVE_DISTANCE_HISTOGRAM:
+ case HT_ADAPTIVE_WEIGHT_HISTOGRAM:
+ case HT_ADAPTIVE_WARD_HISTOGRAM:
+ case HT_ADAPTIVE_HISTOGRAM:
+ break; // ok
default: // not ok
- ythrow yexception() << "Attempt to parse TBlockHistogram from THistogram protobuf record of type = " << (ui32)histo.GetType();
+ ythrow yexception() << "Attempt to parse TBlockHistogram from THistogram protobuf record of type = " << (ui32)histo.GetType();
}
-
+
if (histo.FreqSize() != histo.PositionSize()) {
- ythrow yexception() << "Attempt to parse TBlockHistogram from THistogram protobuf record where FreqSize != PositionSize. FreqSize == " << (ui32)histo.FreqSize() << ", PositionSize == " << (ui32)histo.PositionSize();
+ ythrow yexception() << "Attempt to parse TBlockHistogram from THistogram protobuf record where FreqSize != PositionSize. FreqSize == " << (ui32)histo.FreqSize() << ", PositionSize == " << (ui32)histo.PositionSize();
}
Id = histo.GetId();
Sum = 0;
@@ -244,9 +244,9 @@ namespace NKiwiAggr {
MaxValue = histo.GetMaxValue();
}
- void TBlockHistogram::ToProto(THistogram& histo) {
+ void TBlockHistogram::ToProto(THistogram& histo) {
histo.Clear();
- histo.SetType(Type);
+ histo.SetType(Type);
histo.SetId(Id);
if (Empty()) {
return;
@@ -269,23 +269,23 @@ namespace NKiwiAggr {
return Id;
}
- bool TBlockHistogram::Empty() {
+ bool TBlockHistogram::Empty() {
return Bins.empty();
}
- double TBlockHistogram::GetMinValue() {
+ double TBlockHistogram::GetMinValue() {
return MinValue;
}
- double TBlockHistogram::GetMaxValue() {
+ double TBlockHistogram::GetMaxValue() {
return MaxValue;
}
- double TBlockHistogram::GetSum() {
+ double TBlockHistogram::GetSum() {
return Sum;
}
- void TBlockHistogram::SortAndShrink(size_t intervals, bool final) {
+ void TBlockHistogram::SortAndShrink(size_t intervals, bool final) {
Y_VERIFY(intervals > 0);
if (Bins.size() <= intervals) {
@@ -294,7 +294,7 @@ namespace NKiwiAggr {
if (Bins.size() >= Intervals * GREEDY_SHRINK_MULTIPLIER) {
SortBins();
- UniquifyBins();
+ UniquifyBins();
FastGreedyShrink(intervals);
if (final) {
@@ -303,12 +303,12 @@ namespace NKiwiAggr {
} else {
SortBins();
- UniquifyBins();
+ UniquifyBins();
SlowShrink(intervals);
}
}
- void TBlockHistogram::SortBins() {
+ void TBlockHistogram::SortBins() {
Sort(Bins.begin() + PrevSize, Bins.end());
if (PrevSize != 0) {
TVector<TWeightedValue> temp(Bins.begin(), Bins.begin() + PrevSize);
@@ -316,28 +316,28 @@ namespace NKiwiAggr {
}
}
- void TBlockHistogram::UniquifyBins() {
- if (Bins.empty())
+ void TBlockHistogram::UniquifyBins() {
+ if (Bins.empty())
return;
- auto it1 = Bins.begin();
- auto it2 = Bins.begin();
- while (++it2 != Bins.end()) {
- if (it1->first == it2->first) {
- it1->second += it2->second;
- } else {
- *(++it1) = *it2;
+ auto it1 = Bins.begin();
+ auto it2 = Bins.begin();
+ while (++it2 != Bins.end()) {
+ if (it1->first == it2->first) {
+ it1->second += it2->second;
+ } else {
+ *(++it1) = *it2;
}
}
- Bins.erase(++it1, Bins.end());
+ Bins.erase(++it1, Bins.end());
}
- void TBlockHistogram::CorrectShrinkSize() {
- ShrinkSize = Max(ShrinkSize, Intervals * (SHRINK_MULTIPLIER + GREEDY_SHRINK_MULTIPLIER));
- }
-
- void TBlockHistogram::SlowShrink(size_t intervals) {
+ void TBlockHistogram::CorrectShrinkSize() {
+ ShrinkSize = Max(ShrinkSize, Intervals * (SHRINK_MULTIPLIER + GREEDY_SHRINK_MULTIPLIER));
+ }
+
+ void TBlockHistogram::SlowShrink(size_t intervals) {
{
size_t pos = 0;
for (size_t i = 1; i < Bins.size(); ++i)
@@ -370,7 +370,7 @@ namespace NKiwiAggr {
TVector<double> pairWeights(n);
for (ui32 i = 0; i < n; ++i) {
- pairWeights[i] = CalcQuality(Bins[i], Bins[i + 1]).first;
+ pairWeights[i] = CalcQuality(Bins[i], Bins[i + 1]).first;
}
TSmartHeap heap(pairWeights);
@@ -392,12 +392,12 @@ namespace NKiwiAggr {
Bins[b].second = -1;
if (a != end) {
- pairWeights[a] = CalcQuality(Bins[a], Bins[c]).first;
+ pairWeights[a] = CalcQuality(Bins[a], Bins[c]).first;
heap.DownElement(a);
}
if (d != end && c + 1 != Bins.size()) {
- pairWeights[c] = CalcQuality(Bins[c], Bins[d]).first;
+ pairWeights[c] = CalcQuality(Bins[c], Bins[d]).first;
heap.DownElement(c);
}
@@ -414,34 +414,34 @@ namespace NKiwiAggr {
Y_VERIFY(pos == intervals);
}
- double TBlockHistogram::GetSumInRange(double leftBound, double rightBound) {
+ double TBlockHistogram::GetSumInRange(double leftBound, double rightBound) {
Y_UNUSED(leftBound);
Y_UNUSED(rightBound);
- ythrow yexception() << "Method is not implemented for TBlockHistogram";
+ ythrow yexception() << "Method is not implemented for TBlockHistogram";
return 0;
}
- double TBlockHistogram::GetSumAboveBound(double bound) {
+ double TBlockHistogram::GetSumAboveBound(double bound) {
Y_UNUSED(bound);
- ythrow yexception() << "Method is not implemented for TBlockHistogram";
+ ythrow yexception() << "Method is not implemented for TBlockHistogram";
return 0;
}
- double TBlockHistogram::GetSumBelowBound(double bound) {
+ double TBlockHistogram::GetSumBelowBound(double bound) {
Y_UNUSED(bound);
- ythrow yexception() << "Method is not implemented for TBlockHistogram";
+ ythrow yexception() << "Method is not implemented for TBlockHistogram";
return 0;
}
- double TBlockHistogram::CalcUpperBound(double sum) {
+ double TBlockHistogram::CalcUpperBound(double sum) {
Y_UNUSED(sum);
- ythrow yexception() << "Method is not implemented for TBlockHistogram";
+ ythrow yexception() << "Method is not implemented for TBlockHistogram";
return 0;
}
- double TBlockHistogram::CalcLowerBound(double sum) {
+ double TBlockHistogram::CalcLowerBound(double sum) {
Y_UNUSED(sum);
- ythrow yexception() << "Method is not implemented for TBlockHistogram";
+ ythrow yexception() << "Method is not implemented for TBlockHistogram";
return 0;
}
@@ -450,144 +450,144 @@ namespace NKiwiAggr {
ythrow yexception() << "Method is not implemented for TBlockHistogram";
return 0;
}
-
+
double TBlockHistogram::CalcLowerBoundSafe(double sum) {
Y_UNUSED(sum);
ythrow yexception() << "Method is not implemented for TBlockHistogram";
return 0;
}
- /////////////////////////
- // TBlockWeightHistogram
- /////////////////////////
-
+ /////////////////////////
+ // TBlockWeightHistogram
+ /////////////////////////
+
TBlockWeightHistogram::TBlockWeightHistogram(size_t intervals, ui64 id, size_t shrinkSize)
- : TBlockHistogram(HT_ADAPTIVE_WEIGHT_HISTOGRAM, CalcWeightQuality, intervals, id, shrinkSize)
- {
- }
-
- void TBlockWeightHistogram::FastGreedyShrink(size_t intervals) {
- if (Bins.size() <= intervals)
- return;
-
- double slab = Sum / intervals;
-
- size_t i = 0;
- size_t pos = 0;
- while (i < Bins.size()) {
- double curW = Bins[i].second;
- double curMul = Bins[i].first * Bins[i].second;
- ++i;
- while (i < Bins.size() && curW + Bins[i].second <= slab && pos + Bins.size() - i >= intervals) {
- curW += Bins[i].second;
- curMul += Bins[i].first * Bins[i].second;
- ++i;
- }
- Bins[pos++] = TWeightedValue(curMul / curW, curW);
- }
-
- Bins.resize(pos);
- PrevSize = pos;
- }
-
- ///////////////////////
- // TBlockWardHistogram
- ///////////////////////
-
+ : TBlockHistogram(HT_ADAPTIVE_WEIGHT_HISTOGRAM, CalcWeightQuality, intervals, id, shrinkSize)
+ {
+ }
+
+ void TBlockWeightHistogram::FastGreedyShrink(size_t intervals) {
+ if (Bins.size() <= intervals)
+ return;
+
+ double slab = Sum / intervals;
+
+ size_t i = 0;
+ size_t pos = 0;
+ while (i < Bins.size()) {
+ double curW = Bins[i].second;
+ double curMul = Bins[i].first * Bins[i].second;
+ ++i;
+ while (i < Bins.size() && curW + Bins[i].second <= slab && pos + Bins.size() - i >= intervals) {
+ curW += Bins[i].second;
+ curMul += Bins[i].first * Bins[i].second;
+ ++i;
+ }
+ Bins[pos++] = TWeightedValue(curMul / curW, curW);
+ }
+
+ Bins.resize(pos);
+ PrevSize = pos;
+ }
+
+ ///////////////////////
+ // TBlockWardHistogram
+ ///////////////////////
+
TBlockWardHistogram::TBlockWardHistogram(size_t intervals, ui64 id, size_t shrinkSize)
- : TBlockHistogram(HT_ADAPTIVE_WARD_HISTOGRAM, CalcWardQuality, intervals, id, shrinkSize)
+ : TBlockHistogram(HT_ADAPTIVE_WARD_HISTOGRAM, CalcWardQuality, intervals, id, shrinkSize)
{
}
-
- bool TBlockWardHistogram::CalcSplitInfo(
- const TCumulatives::const_iterator beg,
- const TCumulatives::const_iterator end, // (!) points to the final element
+
+ bool TBlockWardHistogram::CalcSplitInfo(
+ const TCumulatives::const_iterator beg,
+ const TCumulatives::const_iterator end, // (!) points to the final element
TSplitInfo& splitInfo // out
- ) {
- if (end - beg < 2) {
- return false;
- }
-
- TCumulatives::const_iterator mid = LowerBound(beg, end + 1, TCumulative{(beg->first + end->first) / 2, 0.});
-
- if (mid == beg) {
- mid++;
- } else if (mid == end) {
- mid--;
- }
-
- // derived from Ward's minimum variance criterion
- double profit = 0.0;
- profit += (mid->second - beg->second) * (mid->second - beg->second) / (mid->first - beg->first);
- profit += (end->second - mid->second) * (end->second - mid->second) / (end->first - mid->first);
- profit -= (end->second - beg->second) * (end->second - beg->second) / (end->first - beg->first);
-
- splitInfo = {profit, beg, mid, end};
-
- return true;
- }
-
- void TBlockWardHistogram::FastGreedyShrink(size_t intervals) {
+ ) {
+ if (end - beg < 2) {
+ return false;
+ }
+
+ TCumulatives::const_iterator mid = LowerBound(beg, end + 1, TCumulative{(beg->first + end->first) / 2, 0.});
+
+ if (mid == beg) {
+ mid++;
+ } else if (mid == end) {
+ mid--;
+ }
+
+ // derived from Ward's minimum variance criterion
+ double profit = 0.0;
+ profit += (mid->second - beg->second) * (mid->second - beg->second) / (mid->first - beg->first);
+ profit += (end->second - mid->second) * (end->second - mid->second) / (end->first - mid->first);
+ profit -= (end->second - beg->second) * (end->second - beg->second) / (end->first - beg->first);
+
+ splitInfo = {profit, beg, mid, end};
+
+ return true;
+ }
+
+ void TBlockWardHistogram::FastGreedyShrink(size_t intervals) {
Y_VERIFY(intervals > 0);
-
- if (Bins.size() <= intervals) {
- return;
- }
-
- // fill cumulative sums
- // sum at index i equals to the sum of all values before i
- // sum at index i+1 equals to the sum of all values before i with the value at i added
- TCumulatives cumulatives;
- cumulatives.reserve(Bins.size() + 1);
-
- TCumulative cumulative = {0., 0.};
- cumulatives.push_back(cumulative);
- for (size_t i = 0; i < Bins.size(); i++) {
+
+ if (Bins.size() <= intervals) {
+ return;
+ }
+
+ // fill cumulative sums
+ // sum at index i equals to the sum of all values before i
+ // sum at index i+1 equals to the sum of all values before i with the value at i added
+ TCumulatives cumulatives;
+ cumulatives.reserve(Bins.size() + 1);
+
+ TCumulative cumulative = {0., 0.};
+ cumulatives.push_back(cumulative);
+ for (size_t i = 0; i < Bins.size(); i++) {
cumulative.first += Bins[i].second;
- cumulative.second += Bins[i].second * Bins[i].first;
- cumulatives.push_back(cumulative);
- }
-
+ cumulative.second += Bins[i].second * Bins[i].first;
+ cumulatives.push_back(cumulative);
+ }
+
TVector<TCumulatives::const_iterator> splits;
- splits.reserve(intervals + 1);
- splits.push_back(cumulatives.begin());
- splits.push_back(cumulatives.end() - 1);
-
+ splits.reserve(intervals + 1);
+ splits.push_back(cumulatives.begin());
+ splits.push_back(cumulatives.end() - 1);
+
TPriorityQueue<TSplitInfo> candidates;
-
- // explicitly add first split
- TSplitInfo newSplitInfo;
- if (CalcSplitInfo(cumulatives.begin(), cumulatives.end() - 1, newSplitInfo)) {
- candidates.push(newSplitInfo);
- }
-
- // recursively split until done
- for (size_t split = 0; split < intervals - 1 && !candidates.empty(); split++) {
- TSplitInfo curSplitInfo = candidates.top();
- candidates.pop();
-
- splits.push_back(curSplitInfo.mid);
-
- if (CalcSplitInfo(curSplitInfo.beg, curSplitInfo.mid, newSplitInfo)) {
- candidates.push(newSplitInfo);
- }
- if (CalcSplitInfo(curSplitInfo.mid, curSplitInfo.end, newSplitInfo)) {
- candidates.push(newSplitInfo);
- }
- }
-
- // calclate new bin centers and weights
- Sort(splits.begin(), splits.end());
-
- Bins.clear();
- for (auto it = splits.begin(); it + 1 != splits.end(); ++it) {
- auto splitBeg = *it;
- auto splitEnd = *(it + 1);
- double cnt = (splitEnd->first - splitBeg->first);
+
+ // explicitly add first split
+ TSplitInfo newSplitInfo;
+ if (CalcSplitInfo(cumulatives.begin(), cumulatives.end() - 1, newSplitInfo)) {
+ candidates.push(newSplitInfo);
+ }
+
+ // recursively split until done
+ for (size_t split = 0; split < intervals - 1 && !candidates.empty(); split++) {
+ TSplitInfo curSplitInfo = candidates.top();
+ candidates.pop();
+
+ splits.push_back(curSplitInfo.mid);
+
+ if (CalcSplitInfo(curSplitInfo.beg, curSplitInfo.mid, newSplitInfo)) {
+ candidates.push(newSplitInfo);
+ }
+ if (CalcSplitInfo(curSplitInfo.mid, curSplitInfo.end, newSplitInfo)) {
+ candidates.push(newSplitInfo);
+ }
+ }
+
+ // calclate new bin centers and weights
+ Sort(splits.begin(), splits.end());
+
+ Bins.clear();
+ for (auto it = splits.begin(); it + 1 != splits.end(); ++it) {
+ auto splitBeg = *it;
+ auto splitEnd = *(it + 1);
+ double cnt = (splitEnd->first - splitBeg->first);
double mu = (splitEnd->second - splitBeg->second) / cnt;
-
- Bins.push_back(TWeightedValue(mu, cnt));
- }
- }
-
+
+ Bins.push_back(TWeightedValue(mu, cnt));
+ }
+ }
+
}
diff --git a/library/cpp/histogram/adaptive/block_histogram.h b/library/cpp/histogram/adaptive/block_histogram.h
index a892c3da57..266bb2f2b2 100644
--- a/library/cpp/histogram/adaptive/block_histogram.h
+++ b/library/cpp/histogram/adaptive/block_histogram.h
@@ -1,7 +1,7 @@
#pragma once
#include "histogram.h"
-#include "common.h"
+#include "common.h"
#include <library/cpp/histogram/adaptive/protos/histo.pb.h>
@@ -10,31 +10,31 @@
#include <utility>
namespace NKiwiAggr {
- ///////////////////
- // TBlockHistogram
- ///////////////////
-
- /**
- * Contrary to adaptive histogram, block histogram doesn't rebuild bins
- * after the addition of each point. Instead, it accumulates points and in case the amount
- * of points overflows specified limits, it shrinks all the points at once to produce histogram
- * Indeed, there exist two limits and two shrinkage operations:
- * 1) FastGreedyShrink is fast but coarse. It is used to shrink from upper limit to intermediate limit
- * (override FastGreedyShrink to set specific behaviour)
- * 2) SlowShrink is slow, but produces finer histogram. It shrinks from the intermediate limit to the
- * actual number of bins in a manner similar to that in adaptive histogram (set CalcQuality in constuctor)
- * While FastGreedyShrink is used most of the time, SlowShrink is mostly used for histogram finalization
- */
- class TBlockHistogram: private TNonCopyable, public IHistogram {
- protected:
+ ///////////////////
+ // TBlockHistogram
+ ///////////////////
+
+ /**
+ * Contrary to adaptive histogram, block histogram doesn't rebuild bins
+ * after the addition of each point. Instead, it accumulates points and in case the amount
+ * of points overflows specified limits, it shrinks all the points at once to produce histogram
+ * Indeed, there exist two limits and two shrinkage operations:
+ * 1) FastGreedyShrink is fast but coarse. It is used to shrink from upper limit to intermediate limit
+ * (override FastGreedyShrink to set specific behaviour)
+ * 2) SlowShrink is slow, but produces finer histogram. It shrinks from the intermediate limit to the
+ * actual number of bins in a manner similar to that in adaptive histogram (set CalcQuality in constuctor)
+ * While FastGreedyShrink is used most of the time, SlowShrink is mostly used for histogram finalization
+ */
+ class TBlockHistogram: private TNonCopyable, public IHistogram {
+ protected:
static const size_t SHRINK_MULTIPLIER = 2;
static const size_t GREEDY_SHRINK_MULTIPLIER = 4;
static const size_t DEFAULT_INTERVALS = 100;
- static const size_t DEFAULT_SHRINK_SIZE = DEFAULT_INTERVALS * (SHRINK_MULTIPLIER + GREEDY_SHRINK_MULTIPLIER);
+ static const size_t DEFAULT_SHRINK_SIZE = DEFAULT_INTERVALS * (SHRINK_MULTIPLIER + GREEDY_SHRINK_MULTIPLIER);
const EHistogramType Type;
- const TQualityFunction CalcQuality;
-
+ const TQualityFunction CalcQuality;
+
size_t Intervals;
size_t ShrinkSize;
size_t PrevSize;
@@ -48,7 +48,7 @@ namespace NKiwiAggr {
TVector<TWeightedValue> Bins;
public:
- TBlockHistogram(EHistogramType type, TQualityFunction calcQuality,
+ TBlockHistogram(EHistogramType type, TQualityFunction calcQuality,
size_t intervals, ui64 id = 0, size_t shrinkSize = DEFAULT_SHRINK_SIZE);
virtual ~TBlockHistogram() {
@@ -59,7 +59,7 @@ namespace NKiwiAggr {
virtual void Add(double value, double weight);
virtual void Add(const THistoRec& histoRec);
- virtual void Merge(const THistogram& histo, double multiplier);
+ virtual void Merge(const THistogram& histo, double multiplier);
virtual void Merge(const TVector<THistogram>& histogramsToMerge);
virtual void Merge(TVector<IHistogramPtr> histogramsToMerge); // not implemented
@@ -86,63 +86,63 @@ namespace NKiwiAggr {
private:
void SortBins();
- void UniquifyBins();
+ void UniquifyBins();
void CorrectShrinkSize();
void SortAndShrink(size_t intervals, bool final = false);
-
+
void SlowShrink(size_t intervals);
- virtual void FastGreedyShrink(size_t intervals) = 0;
+ virtual void FastGreedyShrink(size_t intervals) = 0;
};
- /////////////////////////
- // TBlockWeightHistogram
- /////////////////////////
-
+ /////////////////////////
+ // TBlockWeightHistogram
+ /////////////////////////
+
class TBlockWeightHistogram: public TBlockHistogram {
- public:
+ public:
TBlockWeightHistogram(size_t intervals, ui64 id = 0, size_t shrinkSize = DEFAULT_SHRINK_SIZE);
-
+
virtual ~TBlockWeightHistogram() {
}
-
- private:
- virtual void FastGreedyShrink(size_t intervals) final;
- };
-
- ///////////////////////
- // TBlockWardHistogram
- ///////////////////////
-
+
+ private:
+ virtual void FastGreedyShrink(size_t intervals) final;
+ };
+
+ ///////////////////////
+ // TBlockWardHistogram
+ ///////////////////////
+
class TBlockWardHistogram: public TBlockHistogram {
- public:
+ public:
TBlockWardHistogram(size_t intervals, ui64 id = 0, size_t shrinkSize = DEFAULT_SHRINK_SIZE);
-
+
virtual ~TBlockWardHistogram() {
}
-
- private:
+
+ private:
using TCumulative = std::pair<double, double>; // cumulative sum of (weights, weighted centers)
using TCumulatives = TVector<TCumulative>;
-
- struct TSplitInfo {
- double profit;
-
- TCumulatives::const_iterator beg;
- TCumulatives::const_iterator mid;
- TCumulatives::const_iterator end;
-
- bool operator<(const TSplitInfo& other) const {
- return profit < other.profit;
- }
- };
-
- private:
- virtual void FastGreedyShrink(size_t intervals) final;
-
- static bool CalcSplitInfo(const TCumulatives::const_iterator beg,
- const TCumulatives::const_iterator end,
- TSplitInfo& splitInfo);
- };
-
+
+ struct TSplitInfo {
+ double profit;
+
+ TCumulatives::const_iterator beg;
+ TCumulatives::const_iterator mid;
+ TCumulatives::const_iterator end;
+
+ bool operator<(const TSplitInfo& other) const {
+ return profit < other.profit;
+ }
+ };
+
+ private:
+ virtual void FastGreedyShrink(size_t intervals) final;
+
+ static bool CalcSplitInfo(const TCumulatives::const_iterator beg,
+ const TCumulatives::const_iterator end,
+ TSplitInfo& splitInfo);
+ };
+
}
diff --git a/library/cpp/histogram/adaptive/common.cpp b/library/cpp/histogram/adaptive/common.cpp
index 4d90ff1549..afc6322fce 100644
--- a/library/cpp/histogram/adaptive/common.cpp
+++ b/library/cpp/histogram/adaptive/common.cpp
@@ -1,19 +1,19 @@
-#include "common.h"
-
-namespace NKiwiAggr {
- TWeightedValue CalcDistanceQuality(const TWeightedValue& left, const TWeightedValue& right) {
- return TWeightedValue(right.first - left.first, left.first);
- }
-
- TWeightedValue CalcWeightQuality(const TWeightedValue& left, const TWeightedValue& right) {
- return TWeightedValue(right.second + left.second, left.first);
- }
-
- TWeightedValue CalcWardQuality(const TWeightedValue& left, const TWeightedValue& right) {
+#include "common.h"
+
+namespace NKiwiAggr {
+ TWeightedValue CalcDistanceQuality(const TWeightedValue& left, const TWeightedValue& right) {
+ return TWeightedValue(right.first - left.first, left.first);
+ }
+
+ TWeightedValue CalcWeightQuality(const TWeightedValue& left, const TWeightedValue& right) {
+ return TWeightedValue(right.second + left.second, left.first);
+ }
+
+ TWeightedValue CalcWardQuality(const TWeightedValue& left, const TWeightedValue& right) {
const double N1 = left.second;
const double N2 = right.second;
- const double mu1 = left.first;
- const double mu2 = right.first;
- return TWeightedValue(N1 * N2 / (N1 + N2) * (mu1 - mu2) * (mu1 - mu2), left.first);
- }
-}
+ const double mu1 = left.first;
+ const double mu2 = right.first;
+ return TWeightedValue(N1 * N2 / (N1 + N2) * (mu1 - mu2) * (mu1 - mu2), left.first);
+ }
+}
diff --git a/library/cpp/histogram/adaptive/common.h b/library/cpp/histogram/adaptive/common.h
index 31a5f2d2f8..c0f7dfb26b 100644
--- a/library/cpp/histogram/adaptive/common.h
+++ b/library/cpp/histogram/adaptive/common.h
@@ -1,12 +1,12 @@
-#pragma once
-
+#pragma once
+
#include <utility>
-
-namespace NKiwiAggr {
+
+namespace NKiwiAggr {
using TWeightedValue = std::pair<double, double>; // value, weight
- using TQualityFunction = TWeightedValue (*)(const TWeightedValue&, const TWeightedValue&);
-
- TWeightedValue CalcDistanceQuality(const TWeightedValue& left, const TWeightedValue& right);
- TWeightedValue CalcWeightQuality(const TWeightedValue& left, const TWeightedValue& right);
- TWeightedValue CalcWardQuality(const TWeightedValue& left, const TWeightedValue& right);
-}
+ using TQualityFunction = TWeightedValue (*)(const TWeightedValue&, const TWeightedValue&);
+
+ TWeightedValue CalcDistanceQuality(const TWeightedValue& left, const TWeightedValue& right);
+ TWeightedValue CalcWeightQuality(const TWeightedValue& left, const TWeightedValue& right);
+ TWeightedValue CalcWardQuality(const TWeightedValue& left, const TWeightedValue& right);
+}
diff --git a/library/cpp/histogram/adaptive/fixed_bin_histogram.cpp b/library/cpp/histogram/adaptive/fixed_bin_histogram.cpp
index 156bc3d1c5..558aba9e2d 100644
--- a/library/cpp/histogram/adaptive/fixed_bin_histogram.cpp
+++ b/library/cpp/histogram/adaptive/fixed_bin_histogram.cpp
@@ -124,10 +124,10 @@ namespace NKiwiAggr {
}
}
- void TFixedBinHistogram::Merge(const THistogram& /*histo*/, double /*multiplier*/) {
- ythrow yexception() << "Method is not implemented for TFixedBinHistogram";
- }
-
+ void TFixedBinHistogram::Merge(const THistogram& /*histo*/, double /*multiplier*/) {
+ ythrow yexception() << "Method is not implemented for TFixedBinHistogram";
+ }
+
void TFixedBinHistogram::Merge(const TVector<THistogram>& histogramsToMerge) {
TVector<IHistogramPtr> parsedHistogramsToMerge;
for (size_t i = 0; i < histogramsToMerge.size(); ++i) {
diff --git a/library/cpp/histogram/adaptive/fixed_bin_histogram.h b/library/cpp/histogram/adaptive/fixed_bin_histogram.h
index c06e892ce9..bd380bd94a 100644
--- a/library/cpp/histogram/adaptive/fixed_bin_histogram.h
+++ b/library/cpp/histogram/adaptive/fixed_bin_histogram.h
@@ -48,7 +48,7 @@ namespace NKiwiAggr {
virtual void Add(double value, double weight);
virtual void Add(const THistoRec& histoRec);
- virtual void Merge(const THistogram& histo, double multiplier);
+ virtual void Merge(const THistogram& histo, double multiplier);
virtual void Merge(const TVector<THistogram>& histogramsToMerge);
virtual void Merge(TVector<IHistogramPtr> histogramsToMerge);
diff --git a/library/cpp/histogram/adaptive/histogram.h b/library/cpp/histogram/adaptive/histogram.h
index a18e94e5c2..360fd9a693 100644
--- a/library/cpp/histogram/adaptive/histogram.h
+++ b/library/cpp/histogram/adaptive/histogram.h
@@ -28,7 +28,7 @@ namespace NKiwiAggr {
virtual void Add(const THistoRec& histoRec) = 0;
// Merge some other histos into current
- virtual void Merge(const THistogram& histo, double multiplier) = 0;
+ virtual void Merge(const THistogram& histo, double multiplier) = 0;
virtual void Merge(const TVector<THistogram>& histogramsToMerge) = 0;
virtual void Merge(TVector<IHistogramPtr> histogramsToMerge) = 0;
diff --git a/library/cpp/histogram/adaptive/protos/histo.proto b/library/cpp/histogram/adaptive/protos/histo.proto
index 2999ca72f3..8961fef022 100644
--- a/library/cpp/histogram/adaptive/protos/histo.proto
+++ b/library/cpp/histogram/adaptive/protos/histo.proto
@@ -17,7 +17,7 @@ enum EHistogramType {
HT_ADAPTIVE_DISTANCE_HISTOGRAM = 2;
HT_ADAPTIVE_WEIGHT_HISTOGRAM = 3;
HT_ADAPTIVE_HISTOGRAM = 4; // if the quality function is unknown
- HT_ADAPTIVE_WARD_HISTOGRAM = 5;
+ HT_ADAPTIVE_WARD_HISTOGRAM = 5;
}
message THistogram {
diff --git a/library/cpp/histogram/adaptive/ya.make b/library/cpp/histogram/adaptive/ya.make
index 6bbc8ccb8c..b589801b27 100644
--- a/library/cpp/histogram/adaptive/ya.make
+++ b/library/cpp/histogram/adaptive/ya.make
@@ -1,14 +1,14 @@
LIBRARY()
-OWNER(
- zosimov
- svirg
-)
+OWNER(
+ zosimov
+ svirg
+)
SRCS(
- common.cpp
+ common.cpp
adaptive_histogram.cpp
- block_histogram.cpp
+ block_histogram.cpp
fixed_bin_histogram.cpp
)