aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/slaqr3.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/slaqr3.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/slaqr3.c')
-rw-r--r--contrib/libs/clapack/slaqr3.c710
1 files changed, 710 insertions, 0 deletions
diff --git a/contrib/libs/clapack/slaqr3.c b/contrib/libs/clapack/slaqr3.c
new file mode 100644
index 0000000000..b3b828af98
--- /dev/null
+++ b/contrib/libs/clapack/slaqr3.c
@@ -0,0 +1,710 @@
+/* slaqr3.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static integer c_n1 = -1;
+static logical c_true = TRUE_;
+static real c_b17 = 0.f;
+static real c_b18 = 1.f;
+static integer c__12 = 12;
+
+/* Subroutine */ int slaqr3_(logical *wantt, logical *wantz, integer *n,
+ integer *ktop, integer *kbot, integer *nw, real *h__, integer *ldh,
+ integer *iloz, integer *ihiz, real *z__, integer *ldz, integer *ns,
+ integer *nd, real *sr, real *si, real *v, integer *ldv, integer *nh,
+ real *t, integer *ldt, integer *nv, real *wv, integer *ldwv, real *
+ work, integer *lwork)
+{
+ /* System generated locals */
+ integer h_dim1, h_offset, t_dim1, t_offset, v_dim1, v_offset, wv_dim1,
+ wv_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4;
+ real r__1, r__2, r__3, r__4, r__5, r__6;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ integer i__, j, k;
+ real s, aa, bb, cc, dd, cs, sn;
+ integer jw;
+ real evi, evk, foo;
+ integer kln;
+ real tau, ulp;
+ integer lwk1, lwk2, lwk3;
+ real beta;
+ integer kend, kcol, info, nmin, ifst, ilst, ltop, krow;
+ logical bulge;
+ extern /* Subroutine */ int slarf_(char *, integer *, integer *, real *,
+ integer *, real *, real *, integer *, real *), sgemm_(
+ char *, char *, integer *, integer *, integer *, real *, real *,
+ integer *, real *, integer *, real *, real *, integer *);
+ integer infqr;
+ extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
+ integer *);
+ integer kwtop;
+ extern /* Subroutine */ int slanv2_(real *, real *, real *, real *, real *
+, real *, real *, real *, real *, real *), slaqr4_(logical *,
+ logical *, integer *, integer *, integer *, real *, integer *,
+ real *, real *, integer *, integer *, real *, integer *, real *,
+ integer *, integer *), slabad_(real *, real *);
+ extern doublereal slamch_(char *);
+ extern /* Subroutine */ int sgehrd_(integer *, integer *, integer *, real
+ *, integer *, real *, real *, integer *, integer *);
+ real safmin;
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *);
+ real safmax;
+ extern /* Subroutine */ int slarfg_(integer *, real *, real *, integer *,
+ real *), slahqr_(logical *, logical *, integer *, integer *,
+ integer *, real *, integer *, real *, real *, integer *, integer *
+, real *, integer *, integer *), slacpy_(char *, integer *,
+ integer *, real *, integer *, real *, integer *), slaset_(
+ char *, integer *, integer *, real *, real *, real *, integer *);
+ logical sorted;
+ extern /* Subroutine */ int strexc_(char *, integer *, real *, integer *,
+ real *, integer *, integer *, integer *, real *, integer *), sormhr_(char *, char *, integer *, integer *, integer *,
+ integer *, real *, integer *, real *, real *, integer *, real *,
+ integer *, integer *);
+ real smlnum;
+ integer lwkopt;
+
+
+/* -- LAPACK auxiliary routine (version 3.2.1) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd.. */
+/* -- April 2009 -- */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* ****************************************************************** */
+/* Aggressive early deflation: */
+
+/* This subroutine accepts as input an upper Hessenberg matrix */
+/* H and performs an orthogonal similarity transformation */
+/* designed to detect and deflate fully converged eigenvalues from */
+/* a trailing principal submatrix. On output H has been over- */
+/* written by a new Hessenberg matrix that is a perturbation of */
+/* an orthogonal similarity transformation of H. It is to be */
+/* hoped that the final version of H has many zero subdiagonal */
+/* entries. */
+
+/* ****************************************************************** */
+/* WANTT (input) LOGICAL */
+/* If .TRUE., then the Hessenberg matrix H is fully updated */
+/* so that the quasi-triangular Schur factor may be */
+/* computed (in cooperation with the calling subroutine). */
+/* If .FALSE., then only enough of H is updated to preserve */
+/* the eigenvalues. */
+
+/* WANTZ (input) LOGICAL */
+/* If .TRUE., then the orthogonal matrix Z is updated so */
+/* so that the orthogonal Schur factor may be computed */
+/* (in cooperation with the calling subroutine). */
+/* If .FALSE., then Z is not referenced. */
+
+/* N (input) INTEGER */
+/* The order of the matrix H and (if WANTZ is .TRUE.) the */
+/* order of the orthogonal matrix Z. */
+
+/* KTOP (input) INTEGER */
+/* It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0. */
+/* KBOT and KTOP together determine an isolated block */
+/* along the diagonal of the Hessenberg matrix. */
+
+/* KBOT (input) INTEGER */
+/* It is assumed without a check that either */
+/* KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together */
+/* determine an isolated block along the diagonal of the */
+/* Hessenberg matrix. */
+
+/* NW (input) INTEGER */
+/* Deflation window size. 1 .LE. NW .LE. (KBOT-KTOP+1). */
+
+/* H (input/output) REAL array, dimension (LDH,N) */
+/* On input the initial N-by-N section of H stores the */
+/* Hessenberg matrix undergoing aggressive early deflation. */
+/* On output H has been transformed by an orthogonal */
+/* similarity transformation, perturbed, and the returned */
+/* to Hessenberg form that (it is to be hoped) has some */
+/* zero subdiagonal entries. */
+
+/* LDH (input) integer */
+/* Leading dimension of H just as declared in the calling */
+/* subroutine. N .LE. LDH */
+
+/* ILOZ (input) INTEGER */
+/* IHIZ (input) INTEGER */
+/* Specify the rows of Z to which transformations must be */
+/* applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N. */
+
+/* Z (input/output) REAL array, dimension (LDZ,N) */
+/* IF WANTZ is .TRUE., then on output, the orthogonal */
+/* similarity transformation mentioned above has been */
+/* accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right. */
+/* If WANTZ is .FALSE., then Z is unreferenced. */
+
+/* LDZ (input) integer */
+/* The leading dimension of Z just as declared in the */
+/* calling subroutine. 1 .LE. LDZ. */
+
+/* NS (output) integer */
+/* The number of unconverged (ie approximate) eigenvalues */
+/* returned in SR and SI that may be used as shifts by the */
+/* calling subroutine. */
+
+/* ND (output) integer */
+/* The number of converged eigenvalues uncovered by this */
+/* subroutine. */
+
+/* SR (output) REAL array, dimension KBOT */
+/* SI (output) REAL array, dimension KBOT */
+/* On output, the real and imaginary parts of approximate */
+/* eigenvalues that may be used for shifts are stored in */
+/* SR(KBOT-ND-NS+1) through SR(KBOT-ND) and */
+/* SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively. */
+/* The real and imaginary parts of converged eigenvalues */
+/* are stored in SR(KBOT-ND+1) through SR(KBOT) and */
+/* SI(KBOT-ND+1) through SI(KBOT), respectively. */
+
+/* V (workspace) REAL array, dimension (LDV,NW) */
+/* An NW-by-NW work array. */
+
+/* LDV (input) integer scalar */
+/* The leading dimension of V just as declared in the */
+/* calling subroutine. NW .LE. LDV */
+
+/* NH (input) integer scalar */
+/* The number of columns of T. NH.GE.NW. */
+
+/* T (workspace) REAL array, dimension (LDT,NW) */
+
+/* LDT (input) integer */
+/* The leading dimension of T just as declared in the */
+/* calling subroutine. NW .LE. LDT */
+
+/* NV (input) integer */
+/* The number of rows of work array WV available for */
+/* workspace. NV.GE.NW. */
+
+/* WV (workspace) REAL array, dimension (LDWV,NW) */
+
+/* LDWV (input) integer */
+/* The leading dimension of W just as declared in the */
+/* calling subroutine. NW .LE. LDV */
+
+/* WORK (workspace) REAL array, dimension LWORK. */
+/* On exit, WORK(1) is set to an estimate of the optimal value */
+/* of LWORK for the given values of N, NW, KTOP and KBOT. */
+
+/* LWORK (input) integer */
+/* The dimension of the work array WORK. LWORK = 2*NW */
+/* suffices, but greater efficiency may result from larger */
+/* values of LWORK. */
+
+/* If LWORK = -1, then a workspace query is assumed; SLAQR3 */
+/* only estimates the optimal workspace size for the given */
+/* values of N, NW, KTOP and KBOT. The estimate is returned */
+/* in WORK(1). No error message related to LWORK is issued */
+/* by XERBLA. Neither H nor Z are accessed. */
+
+/* ================================================================ */
+/* Based on contributions by */
+/* Karen Braman and Ralph Byers, Department of Mathematics, */
+/* University of Kansas, USA */
+
+/* ================================================================ */
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* ==== Estimate optimal workspace. ==== */
+
+ /* Parameter adjustments */
+ h_dim1 = *ldh;
+ h_offset = 1 + h_dim1;
+ h__ -= h_offset;
+ z_dim1 = *ldz;
+ z_offset = 1 + z_dim1;
+ z__ -= z_offset;
+ --sr;
+ --si;
+ v_dim1 = *ldv;
+ v_offset = 1 + v_dim1;
+ v -= v_offset;
+ t_dim1 = *ldt;
+ t_offset = 1 + t_dim1;
+ t -= t_offset;
+ wv_dim1 = *ldwv;
+ wv_offset = 1 + wv_dim1;
+ wv -= wv_offset;
+ --work;
+
+ /* Function Body */
+/* Computing MIN */
+ i__1 = *nw, i__2 = *kbot - *ktop + 1;
+ jw = min(i__1,i__2);
+ if (jw <= 2) {
+ lwkopt = 1;
+ } else {
+
+/* ==== Workspace query call to SGEHRD ==== */
+
+ i__1 = jw - 1;
+ sgehrd_(&jw, &c__1, &i__1, &t[t_offset], ldt, &work[1], &work[1], &
+ c_n1, &info);
+ lwk1 = (integer) work[1];
+
+/* ==== Workspace query call to SORMHR ==== */
+
+ i__1 = jw - 1;
+ sormhr_("R", "N", &jw, &jw, &c__1, &i__1, &t[t_offset], ldt, &work[1],
+ &v[v_offset], ldv, &work[1], &c_n1, &info);
+ lwk2 = (integer) work[1];
+
+/* ==== Workspace query call to SLAQR4 ==== */
+
+ slaqr4_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sr[1],
+ &si[1], &c__1, &jw, &v[v_offset], ldv, &work[1], &c_n1, &
+ infqr);
+ lwk3 = (integer) work[1];
+
+/* ==== Optimal workspace ==== */
+
+/* Computing MAX */
+ i__1 = jw + max(lwk1,lwk2);
+ lwkopt = max(i__1,lwk3);
+ }
+
+/* ==== Quick return in case of workspace query. ==== */
+
+ if (*lwork == -1) {
+ work[1] = (real) lwkopt;
+ return 0;
+ }
+
+/* ==== Nothing to do ... */
+/* ... for an empty active block ... ==== */
+ *ns = 0;
+ *nd = 0;
+ work[1] = 1.f;
+ if (*ktop > *kbot) {
+ return 0;
+ }
+/* ... nor for an empty deflation window. ==== */
+ if (*nw < 1) {
+ return 0;
+ }
+
+/* ==== Machine constants ==== */
+
+ safmin = slamch_("SAFE MINIMUM");
+ safmax = 1.f / safmin;
+ slabad_(&safmin, &safmax);
+ ulp = slamch_("PRECISION");
+ smlnum = safmin * ((real) (*n) / ulp);
+
+/* ==== Setup deflation window ==== */
+
+/* Computing MIN */
+ i__1 = *nw, i__2 = *kbot - *ktop + 1;
+ jw = min(i__1,i__2);
+ kwtop = *kbot - jw + 1;
+ if (kwtop == *ktop) {
+ s = 0.f;
+ } else {
+ s = h__[kwtop + (kwtop - 1) * h_dim1];
+ }
+
+ if (*kbot == kwtop) {
+
+/* ==== 1-by-1 deflation window: not much to do ==== */
+
+ sr[kwtop] = h__[kwtop + kwtop * h_dim1];
+ si[kwtop] = 0.f;
+ *ns = 1;
+ *nd = 0;
+/* Computing MAX */
+ r__2 = smlnum, r__3 = ulp * (r__1 = h__[kwtop + kwtop * h_dim1], dabs(
+ r__1));
+ if (dabs(s) <= dmax(r__2,r__3)) {
+ *ns = 0;
+ *nd = 1;
+ if (kwtop > *ktop) {
+ h__[kwtop + (kwtop - 1) * h_dim1] = 0.f;
+ }
+ }
+ work[1] = 1.f;
+ return 0;
+ }
+
+/* ==== Convert to spike-triangular form. (In case of a */
+/* . rare QR failure, this routine continues to do */
+/* . aggressive early deflation using that part of */
+/* . the deflation window that converged using INFQR */
+/* . here and there to keep track.) ==== */
+
+ slacpy_("U", &jw, &jw, &h__[kwtop + kwtop * h_dim1], ldh, &t[t_offset],
+ ldt);
+ i__1 = jw - 1;
+ i__2 = *ldh + 1;
+ i__3 = *ldt + 1;
+ scopy_(&i__1, &h__[kwtop + 1 + kwtop * h_dim1], &i__2, &t[t_dim1 + 2], &
+ i__3);
+
+ slaset_("A", &jw, &jw, &c_b17, &c_b18, &v[v_offset], ldv);
+ nmin = ilaenv_(&c__12, "SLAQR3", "SV", &jw, &c__1, &jw, lwork);
+ if (jw > nmin) {
+ slaqr4_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sr[
+ kwtop], &si[kwtop], &c__1, &jw, &v[v_offset], ldv, &work[1],
+ lwork, &infqr);
+ } else {
+ slahqr_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sr[
+ kwtop], &si[kwtop], &c__1, &jw, &v[v_offset], ldv, &infqr);
+ }
+
+/* ==== STREXC needs a clean margin near the diagonal ==== */
+
+ i__1 = jw - 3;
+ for (j = 1; j <= i__1; ++j) {
+ t[j + 2 + j * t_dim1] = 0.f;
+ t[j + 3 + j * t_dim1] = 0.f;
+/* L10: */
+ }
+ if (jw > 2) {
+ t[jw + (jw - 2) * t_dim1] = 0.f;
+ }
+
+/* ==== Deflation detection loop ==== */
+
+ *ns = jw;
+ ilst = infqr + 1;
+L20:
+ if (ilst <= *ns) {
+ if (*ns == 1) {
+ bulge = FALSE_;
+ } else {
+ bulge = t[*ns + (*ns - 1) * t_dim1] != 0.f;
+ }
+
+/* ==== Small spike tip test for deflation ==== */
+
+ if (! bulge) {
+
+/* ==== Real eigenvalue ==== */
+
+ foo = (r__1 = t[*ns + *ns * t_dim1], dabs(r__1));
+ if (foo == 0.f) {
+ foo = dabs(s);
+ }
+/* Computing MAX */
+ r__2 = smlnum, r__3 = ulp * foo;
+ if ((r__1 = s * v[*ns * v_dim1 + 1], dabs(r__1)) <= dmax(r__2,
+ r__3)) {
+
+/* ==== Deflatable ==== */
+
+ --(*ns);
+ } else {
+
+/* ==== Undeflatable. Move it up out of the way. */
+/* . (STREXC can not fail in this case.) ==== */
+
+ ifst = *ns;
+ strexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
+ &ilst, &work[1], &info);
+ ++ilst;
+ }
+ } else {
+
+/* ==== Complex conjugate pair ==== */
+
+ foo = (r__3 = t[*ns + *ns * t_dim1], dabs(r__3)) + sqrt((r__1 = t[
+ *ns + (*ns - 1) * t_dim1], dabs(r__1))) * sqrt((r__2 = t[*
+ ns - 1 + *ns * t_dim1], dabs(r__2)));
+ if (foo == 0.f) {
+ foo = dabs(s);
+ }
+/* Computing MAX */
+ r__3 = (r__1 = s * v[*ns * v_dim1 + 1], dabs(r__1)), r__4 = (r__2
+ = s * v[(*ns - 1) * v_dim1 + 1], dabs(r__2));
+/* Computing MAX */
+ r__5 = smlnum, r__6 = ulp * foo;
+ if (dmax(r__3,r__4) <= dmax(r__5,r__6)) {
+
+/* ==== Deflatable ==== */
+
+ *ns += -2;
+ } else {
+
+/* ==== Undeflatable. Move them up out of the way. */
+/* . Fortunately, STREXC does the right thing with */
+/* . ILST in case of a rare exchange failure. ==== */
+
+ ifst = *ns;
+ strexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
+ &ilst, &work[1], &info);
+ ilst += 2;
+ }
+ }
+
+/* ==== End deflation detection loop ==== */
+
+ goto L20;
+ }
+
+/* ==== Return to Hessenberg form ==== */
+
+ if (*ns == 0) {
+ s = 0.f;
+ }
+
+ if (*ns < jw) {
+
+/* ==== sorting diagonal blocks of T improves accuracy for */
+/* . graded matrices. Bubble sort deals well with */
+/* . exchange failures. ==== */
+
+ sorted = FALSE_;
+ i__ = *ns + 1;
+L30:
+ if (sorted) {
+ goto L50;
+ }
+ sorted = TRUE_;
+
+ kend = i__ - 1;
+ i__ = infqr + 1;
+ if (i__ == *ns) {
+ k = i__ + 1;
+ } else if (t[i__ + 1 + i__ * t_dim1] == 0.f) {
+ k = i__ + 1;
+ } else {
+ k = i__ + 2;
+ }
+L40:
+ if (k <= kend) {
+ if (k == i__ + 1) {
+ evi = (r__1 = t[i__ + i__ * t_dim1], dabs(r__1));
+ } else {
+ evi = (r__3 = t[i__ + i__ * t_dim1], dabs(r__3)) + sqrt((r__1
+ = t[i__ + 1 + i__ * t_dim1], dabs(r__1))) * sqrt((
+ r__2 = t[i__ + (i__ + 1) * t_dim1], dabs(r__2)));
+ }
+
+ if (k == kend) {
+ evk = (r__1 = t[k + k * t_dim1], dabs(r__1));
+ } else if (t[k + 1 + k * t_dim1] == 0.f) {
+ evk = (r__1 = t[k + k * t_dim1], dabs(r__1));
+ } else {
+ evk = (r__3 = t[k + k * t_dim1], dabs(r__3)) + sqrt((r__1 = t[
+ k + 1 + k * t_dim1], dabs(r__1))) * sqrt((r__2 = t[k
+ + (k + 1) * t_dim1], dabs(r__2)));
+ }
+
+ if (evi >= evk) {
+ i__ = k;
+ } else {
+ sorted = FALSE_;
+ ifst = i__;
+ ilst = k;
+ strexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
+ &ilst, &work[1], &info);
+ if (info == 0) {
+ i__ = ilst;
+ } else {
+ i__ = k;
+ }
+ }
+ if (i__ == kend) {
+ k = i__ + 1;
+ } else if (t[i__ + 1 + i__ * t_dim1] == 0.f) {
+ k = i__ + 1;
+ } else {
+ k = i__ + 2;
+ }
+ goto L40;
+ }
+ goto L30;
+L50:
+ ;
+ }
+
+/* ==== Restore shift/eigenvalue array from T ==== */
+
+ i__ = jw;
+L60:
+ if (i__ >= infqr + 1) {
+ if (i__ == infqr + 1) {
+ sr[kwtop + i__ - 1] = t[i__ + i__ * t_dim1];
+ si[kwtop + i__ - 1] = 0.f;
+ --i__;
+ } else if (t[i__ + (i__ - 1) * t_dim1] == 0.f) {
+ sr[kwtop + i__ - 1] = t[i__ + i__ * t_dim1];
+ si[kwtop + i__ - 1] = 0.f;
+ --i__;
+ } else {
+ aa = t[i__ - 1 + (i__ - 1) * t_dim1];
+ cc = t[i__ + (i__ - 1) * t_dim1];
+ bb = t[i__ - 1 + i__ * t_dim1];
+ dd = t[i__ + i__ * t_dim1];
+ slanv2_(&aa, &bb, &cc, &dd, &sr[kwtop + i__ - 2], &si[kwtop + i__
+ - 2], &sr[kwtop + i__ - 1], &si[kwtop + i__ - 1], &cs, &
+ sn);
+ i__ += -2;
+ }
+ goto L60;
+ }
+
+ if (*ns < jw || s == 0.f) {
+ if (*ns > 1 && s != 0.f) {
+
+/* ==== Reflect spike back into lower triangle ==== */
+
+ scopy_(ns, &v[v_offset], ldv, &work[1], &c__1);
+ beta = work[1];
+ slarfg_(ns, &beta, &work[2], &c__1, &tau);
+ work[1] = 1.f;
+
+ i__1 = jw - 2;
+ i__2 = jw - 2;
+ slaset_("L", &i__1, &i__2, &c_b17, &c_b17, &t[t_dim1 + 3], ldt);
+
+ slarf_("L", ns, &jw, &work[1], &c__1, &tau, &t[t_offset], ldt, &
+ work[jw + 1]);
+ slarf_("R", ns, ns, &work[1], &c__1, &tau, &t[t_offset], ldt, &
+ work[jw + 1]);
+ slarf_("R", &jw, ns, &work[1], &c__1, &tau, &v[v_offset], ldv, &
+ work[jw + 1]);
+
+ i__1 = *lwork - jw;
+ sgehrd_(&jw, &c__1, ns, &t[t_offset], ldt, &work[1], &work[jw + 1]
+, &i__1, &info);
+ }
+
+/* ==== Copy updated reduced window into place ==== */
+
+ if (kwtop > 1) {
+ h__[kwtop + (kwtop - 1) * h_dim1] = s * v[v_dim1 + 1];
+ }
+ slacpy_("U", &jw, &jw, &t[t_offset], ldt, &h__[kwtop + kwtop * h_dim1]
+, ldh);
+ i__1 = jw - 1;
+ i__2 = *ldt + 1;
+ i__3 = *ldh + 1;
+ scopy_(&i__1, &t[t_dim1 + 2], &i__2, &h__[kwtop + 1 + kwtop * h_dim1],
+ &i__3);
+
+/* ==== Accumulate orthogonal matrix in order update */
+/* . H and Z, if requested. ==== */
+
+ if (*ns > 1 && s != 0.f) {
+ i__1 = *lwork - jw;
+ sormhr_("R", "N", &jw, ns, &c__1, ns, &t[t_offset], ldt, &work[1],
+ &v[v_offset], ldv, &work[jw + 1], &i__1, &info);
+ }
+
+/* ==== Update vertical slab in H ==== */
+
+ if (*wantt) {
+ ltop = 1;
+ } else {
+ ltop = *ktop;
+ }
+ i__1 = kwtop - 1;
+ i__2 = *nv;
+ for (krow = ltop; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow +=
+ i__2) {
+/* Computing MIN */
+ i__3 = *nv, i__4 = kwtop - krow;
+ kln = min(i__3,i__4);
+ sgemm_("N", "N", &kln, &jw, &jw, &c_b18, &h__[krow + kwtop *
+ h_dim1], ldh, &v[v_offset], ldv, &c_b17, &wv[wv_offset],
+ ldwv);
+ slacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &h__[krow + kwtop *
+ h_dim1], ldh);
+/* L70: */
+ }
+
+/* ==== Update horizontal slab in H ==== */
+
+ if (*wantt) {
+ i__2 = *n;
+ i__1 = *nh;
+ for (kcol = *kbot + 1; i__1 < 0 ? kcol >= i__2 : kcol <= i__2;
+ kcol += i__1) {
+/* Computing MIN */
+ i__3 = *nh, i__4 = *n - kcol + 1;
+ kln = min(i__3,i__4);
+ sgemm_("C", "N", &jw, &kln, &jw, &c_b18, &v[v_offset], ldv, &
+ h__[kwtop + kcol * h_dim1], ldh, &c_b17, &t[t_offset],
+ ldt);
+ slacpy_("A", &jw, &kln, &t[t_offset], ldt, &h__[kwtop + kcol *
+ h_dim1], ldh);
+/* L80: */
+ }
+ }
+
+/* ==== Update vertical slab in Z ==== */
+
+ if (*wantz) {
+ i__1 = *ihiz;
+ i__2 = *nv;
+ for (krow = *iloz; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow +=
+ i__2) {
+/* Computing MIN */
+ i__3 = *nv, i__4 = *ihiz - krow + 1;
+ kln = min(i__3,i__4);
+ sgemm_("N", "N", &kln, &jw, &jw, &c_b18, &z__[krow + kwtop *
+ z_dim1], ldz, &v[v_offset], ldv, &c_b17, &wv[
+ wv_offset], ldwv);
+ slacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &z__[krow +
+ kwtop * z_dim1], ldz);
+/* L90: */
+ }
+ }
+ }
+
+/* ==== Return the number of deflations ... ==== */
+
+ *nd = jw - *ns;
+
+/* ==== ... and the number of shifts. (Subtracting */
+/* . INFQR from the spike length takes care */
+/* . of the case of a rare QR failure while */
+/* . calculating eigenvalues of the deflation */
+/* . window.) ==== */
+
+ *ns -= infqr;
+
+/* ==== Return optimal workspace. ==== */
+
+ work[1] = (real) lwkopt;
+
+/* ==== End of SLAQR3 ==== */
+
+ return 0;
+} /* slaqr3_ */