From 90d450f74722da7859d6f510a869f6c6908fd12f Mon Sep 17 00:00:00 2001
From: shmel1k <shmel1k@ydb.tech>
Date: Fri, 2 Sep 2022 12:44:59 +0300
Subject: [] add metering mode to CLI

---
 contrib/libs/clapack/slaqr3.c | 710 ++++++++++++++++++++++++++++++++++++++++++
 1 file changed, 710 insertions(+)
 create mode 100644 contrib/libs/clapack/slaqr3.c

(limited to 'contrib/libs/clapack/slaqr3.c')

diff --git a/contrib/libs/clapack/slaqr3.c b/contrib/libs/clapack/slaqr3.c
new file mode 100644
index 0000000000..b3b828af98
--- /dev/null
+++ b/contrib/libs/clapack/slaqr3.c
@@ -0,0 +1,710 @@
+/* slaqr3.f -- translated by f2c (version 20061008).
+   You must link the resulting object file with libf2c:
+	on Microsoft Windows system, link with libf2c.lib;
+	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+	or, if you install libf2c.a in a standard place, with -lf2c -lm
+	-- in that order, at the end of the command line, as in
+		cc *.o -lf2c -lm
+	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+		http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static integer c_n1 = -1;
+static logical c_true = TRUE_;
+static real c_b17 = 0.f;
+static real c_b18 = 1.f;
+static integer c__12 = 12;
+
+/* Subroutine */ int slaqr3_(logical *wantt, logical *wantz, integer *n, 
+	integer *ktop, integer *kbot, integer *nw, real *h__, integer *ldh, 
+	integer *iloz, integer *ihiz, real *z__, integer *ldz, integer *ns, 
+	integer *nd, real *sr, real *si, real *v, integer *ldv, integer *nh, 
+	real *t, integer *ldt, integer *nv, real *wv, integer *ldwv, real *
+	work, integer *lwork)
+{
+    /* System generated locals */
+    integer h_dim1, h_offset, t_dim1, t_offset, v_dim1, v_offset, wv_dim1, 
+	    wv_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4;
+    real r__1, r__2, r__3, r__4, r__5, r__6;
+
+    /* Builtin functions */
+    double sqrt(doublereal);
+
+    /* Local variables */
+    integer i__, j, k;
+    real s, aa, bb, cc, dd, cs, sn;
+    integer jw;
+    real evi, evk, foo;
+    integer kln;
+    real tau, ulp;
+    integer lwk1, lwk2, lwk3;
+    real beta;
+    integer kend, kcol, info, nmin, ifst, ilst, ltop, krow;
+    logical bulge;
+    extern /* Subroutine */ int slarf_(char *, integer *, integer *, real *, 
+	    integer *, real *, real *, integer *, real *), sgemm_(
+	    char *, char *, integer *, integer *, integer *, real *, real *, 
+	    integer *, real *, integer *, real *, real *, integer *);
+    integer infqr;
+    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
+	    integer *);
+    integer kwtop;
+    extern /* Subroutine */ int slanv2_(real *, real *, real *, real *, real *
+, real *, real *, real *, real *, real *), slaqr4_(logical *, 
+	    logical *, integer *, integer *, integer *, real *, integer *, 
+	    real *, real *, integer *, integer *, real *, integer *, real *, 
+	    integer *, integer *), slabad_(real *, real *);
+    extern doublereal slamch_(char *);
+    extern /* Subroutine */ int sgehrd_(integer *, integer *, integer *, real 
+	    *, integer *, real *, real *, integer *, integer *);
+    real safmin;
+    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
+	    integer *, integer *);
+    real safmax;
+    extern /* Subroutine */ int slarfg_(integer *, real *, real *, integer *, 
+	    real *), slahqr_(logical *, logical *, integer *, integer *, 
+	    integer *, real *, integer *, real *, real *, integer *, integer *
+, real *, integer *, integer *), slacpy_(char *, integer *, 
+	    integer *, real *, integer *, real *, integer *), slaset_(
+	    char *, integer *, integer *, real *, real *, real *, integer *);
+    logical sorted;
+    extern /* Subroutine */ int strexc_(char *, integer *, real *, integer *, 
+	    real *, integer *, integer *, integer *, real *, integer *), sormhr_(char *, char *, integer *, integer *, integer *, 
+	    integer *, real *, integer *, real *, real *, integer *, real *, 
+	    integer *, integer *);
+    real smlnum;
+    integer lwkopt;
+
+
+/*  -- LAPACK auxiliary routine (version 3.2.1)                        -- */
+/*     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd.. */
+/*  -- April 2009                                                      -- */
+
+/*     .. Scalar Arguments .. */
+/*     .. */
+/*     .. Array Arguments .. */
+/*     .. */
+
+/*     ****************************************************************** */
+/*     Aggressive early deflation: */
+
+/*     This subroutine accepts as input an upper Hessenberg matrix */
+/*     H and performs an orthogonal similarity transformation */
+/*     designed to detect and deflate fully converged eigenvalues from */
+/*     a trailing principal submatrix.  On output H has been over- */
+/*     written by a new Hessenberg matrix that is a perturbation of */
+/*     an orthogonal similarity transformation of H.  It is to be */
+/*     hoped that the final version of H has many zero subdiagonal */
+/*     entries. */
+
+/*     ****************************************************************** */
+/*     WANTT   (input) LOGICAL */
+/*          If .TRUE., then the Hessenberg matrix H is fully updated */
+/*          so that the quasi-triangular Schur factor may be */
+/*          computed (in cooperation with the calling subroutine). */
+/*          If .FALSE., then only enough of H is updated to preserve */
+/*          the eigenvalues. */
+
+/*     WANTZ   (input) LOGICAL */
+/*          If .TRUE., then the orthogonal matrix Z is updated so */
+/*          so that the orthogonal Schur factor may be computed */
+/*          (in cooperation with the calling subroutine). */
+/*          If .FALSE., then Z is not referenced. */
+
+/*     N       (input) INTEGER */
+/*          The order of the matrix H and (if WANTZ is .TRUE.) the */
+/*          order of the orthogonal matrix Z. */
+
+/*     KTOP    (input) INTEGER */
+/*          It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0. */
+/*          KBOT and KTOP together determine an isolated block */
+/*          along the diagonal of the Hessenberg matrix. */
+
+/*     KBOT    (input) INTEGER */
+/*          It is assumed without a check that either */
+/*          KBOT = N or H(KBOT+1,KBOT)=0.  KBOT and KTOP together */
+/*          determine an isolated block along the diagonal of the */
+/*          Hessenberg matrix. */
+
+/*     NW      (input) INTEGER */
+/*          Deflation window size.  1 .LE. NW .LE. (KBOT-KTOP+1). */
+
+/*     H       (input/output) REAL array, dimension (LDH,N) */
+/*          On input the initial N-by-N section of H stores the */
+/*          Hessenberg matrix undergoing aggressive early deflation. */
+/*          On output H has been transformed by an orthogonal */
+/*          similarity transformation, perturbed, and the returned */
+/*          to Hessenberg form that (it is to be hoped) has some */
+/*          zero subdiagonal entries. */
+
+/*     LDH     (input) integer */
+/*          Leading dimension of H just as declared in the calling */
+/*          subroutine.  N .LE. LDH */
+
+/*     ILOZ    (input) INTEGER */
+/*     IHIZ    (input) INTEGER */
+/*          Specify the rows of Z to which transformations must be */
+/*          applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N. */
+
+/*     Z       (input/output) REAL array, dimension (LDZ,N) */
+/*          IF WANTZ is .TRUE., then on output, the orthogonal */
+/*          similarity transformation mentioned above has been */
+/*          accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right. */
+/*          If WANTZ is .FALSE., then Z is unreferenced. */
+
+/*     LDZ     (input) integer */
+/*          The leading dimension of Z just as declared in the */
+/*          calling subroutine.  1 .LE. LDZ. */
+
+/*     NS      (output) integer */
+/*          The number of unconverged (ie approximate) eigenvalues */
+/*          returned in SR and SI that may be used as shifts by the */
+/*          calling subroutine. */
+
+/*     ND      (output) integer */
+/*          The number of converged eigenvalues uncovered by this */
+/*          subroutine. */
+
+/*     SR      (output) REAL array, dimension KBOT */
+/*     SI      (output) REAL array, dimension KBOT */
+/*          On output, the real and imaginary parts of approximate */
+/*          eigenvalues that may be used for shifts are stored in */
+/*          SR(KBOT-ND-NS+1) through SR(KBOT-ND) and */
+/*          SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively. */
+/*          The real and imaginary parts of converged eigenvalues */
+/*          are stored in SR(KBOT-ND+1) through SR(KBOT) and */
+/*          SI(KBOT-ND+1) through SI(KBOT), respectively. */
+
+/*     V       (workspace) REAL array, dimension (LDV,NW) */
+/*          An NW-by-NW work array. */
+
+/*     LDV     (input) integer scalar */
+/*          The leading dimension of V just as declared in the */
+/*          calling subroutine.  NW .LE. LDV */
+
+/*     NH      (input) integer scalar */
+/*          The number of columns of T.  NH.GE.NW. */
+
+/*     T       (workspace) REAL array, dimension (LDT,NW) */
+
+/*     LDT     (input) integer */
+/*          The leading dimension of T just as declared in the */
+/*          calling subroutine.  NW .LE. LDT */
+
+/*     NV      (input) integer */
+/*          The number of rows of work array WV available for */
+/*          workspace.  NV.GE.NW. */
+
+/*     WV      (workspace) REAL array, dimension (LDWV,NW) */
+
+/*     LDWV    (input) integer */
+/*          The leading dimension of W just as declared in the */
+/*          calling subroutine.  NW .LE. LDV */
+
+/*     WORK    (workspace) REAL array, dimension LWORK. */
+/*          On exit, WORK(1) is set to an estimate of the optimal value */
+/*          of LWORK for the given values of N, NW, KTOP and KBOT. */
+
+/*     LWORK   (input) integer */
+/*          The dimension of the work array WORK.  LWORK = 2*NW */
+/*          suffices, but greater efficiency may result from larger */
+/*          values of LWORK. */
+
+/*          If LWORK = -1, then a workspace query is assumed; SLAQR3 */
+/*          only estimates the optimal workspace size for the given */
+/*          values of N, NW, KTOP and KBOT.  The estimate is returned */
+/*          in WORK(1).  No error message related to LWORK is issued */
+/*          by XERBLA.  Neither H nor Z are accessed. */
+
+/*     ================================================================ */
+/*     Based on contributions by */
+/*        Karen Braman and Ralph Byers, Department of Mathematics, */
+/*        University of Kansas, USA */
+
+/*     ================================================================ */
+/*     .. Parameters .. */
+/*     .. */
+/*     .. Local Scalars .. */
+/*     .. */
+/*     .. External Functions .. */
+/*     .. */
+/*     .. External Subroutines .. */
+/*     .. */
+/*     .. Intrinsic Functions .. */
+/*     .. */
+/*     .. Executable Statements .. */
+
+/*     ==== Estimate optimal workspace. ==== */
+
+    /* Parameter adjustments */
+    h_dim1 = *ldh;
+    h_offset = 1 + h_dim1;
+    h__ -= h_offset;
+    z_dim1 = *ldz;
+    z_offset = 1 + z_dim1;
+    z__ -= z_offset;
+    --sr;
+    --si;
+    v_dim1 = *ldv;
+    v_offset = 1 + v_dim1;
+    v -= v_offset;
+    t_dim1 = *ldt;
+    t_offset = 1 + t_dim1;
+    t -= t_offset;
+    wv_dim1 = *ldwv;
+    wv_offset = 1 + wv_dim1;
+    wv -= wv_offset;
+    --work;
+
+    /* Function Body */
+/* Computing MIN */
+    i__1 = *nw, i__2 = *kbot - *ktop + 1;
+    jw = min(i__1,i__2);
+    if (jw <= 2) {
+	lwkopt = 1;
+    } else {
+
+/*        ==== Workspace query call to SGEHRD ==== */
+
+	i__1 = jw - 1;
+	sgehrd_(&jw, &c__1, &i__1, &t[t_offset], ldt, &work[1], &work[1], &
+		c_n1, &info);
+	lwk1 = (integer) work[1];
+
+/*        ==== Workspace query call to SORMHR ==== */
+
+	i__1 = jw - 1;
+	sormhr_("R", "N", &jw, &jw, &c__1, &i__1, &t[t_offset], ldt, &work[1], 
+		 &v[v_offset], ldv, &work[1], &c_n1, &info);
+	lwk2 = (integer) work[1];
+
+/*        ==== Workspace query call to SLAQR4 ==== */
+
+	slaqr4_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sr[1], 
+		&si[1], &c__1, &jw, &v[v_offset], ldv, &work[1], &c_n1, &
+		infqr);
+	lwk3 = (integer) work[1];
+
+/*        ==== Optimal workspace ==== */
+
+/* Computing MAX */
+	i__1 = jw + max(lwk1,lwk2);
+	lwkopt = max(i__1,lwk3);
+    }
+
+/*     ==== Quick return in case of workspace query. ==== */
+
+    if (*lwork == -1) {
+	work[1] = (real) lwkopt;
+	return 0;
+    }
+
+/*     ==== Nothing to do ... */
+/*     ... for an empty active block ... ==== */
+    *ns = 0;
+    *nd = 0;
+    work[1] = 1.f;
+    if (*ktop > *kbot) {
+	return 0;
+    }
+/*     ... nor for an empty deflation window. ==== */
+    if (*nw < 1) {
+	return 0;
+    }
+
+/*     ==== Machine constants ==== */
+
+    safmin = slamch_("SAFE MINIMUM");
+    safmax = 1.f / safmin;
+    slabad_(&safmin, &safmax);
+    ulp = slamch_("PRECISION");
+    smlnum = safmin * ((real) (*n) / ulp);
+
+/*     ==== Setup deflation window ==== */
+
+/* Computing MIN */
+    i__1 = *nw, i__2 = *kbot - *ktop + 1;
+    jw = min(i__1,i__2);
+    kwtop = *kbot - jw + 1;
+    if (kwtop == *ktop) {
+	s = 0.f;
+    } else {
+	s = h__[kwtop + (kwtop - 1) * h_dim1];
+    }
+
+    if (*kbot == kwtop) {
+
+/*        ==== 1-by-1 deflation window: not much to do ==== */
+
+	sr[kwtop] = h__[kwtop + kwtop * h_dim1];
+	si[kwtop] = 0.f;
+	*ns = 1;
+	*nd = 0;
+/* Computing MAX */
+	r__2 = smlnum, r__3 = ulp * (r__1 = h__[kwtop + kwtop * h_dim1], dabs(
+		r__1));
+	if (dabs(s) <= dmax(r__2,r__3)) {
+	    *ns = 0;
+	    *nd = 1;
+	    if (kwtop > *ktop) {
+		h__[kwtop + (kwtop - 1) * h_dim1] = 0.f;
+	    }
+	}
+	work[1] = 1.f;
+	return 0;
+    }
+
+/*     ==== Convert to spike-triangular form.  (In case of a */
+/*     .    rare QR failure, this routine continues to do */
+/*     .    aggressive early deflation using that part of */
+/*     .    the deflation window that converged using INFQR */
+/*     .    here and there to keep track.) ==== */
+
+    slacpy_("U", &jw, &jw, &h__[kwtop + kwtop * h_dim1], ldh, &t[t_offset], 
+	    ldt);
+    i__1 = jw - 1;
+    i__2 = *ldh + 1;
+    i__3 = *ldt + 1;
+    scopy_(&i__1, &h__[kwtop + 1 + kwtop * h_dim1], &i__2, &t[t_dim1 + 2], &
+	    i__3);
+
+    slaset_("A", &jw, &jw, &c_b17, &c_b18, &v[v_offset], ldv);
+    nmin = ilaenv_(&c__12, "SLAQR3", "SV", &jw, &c__1, &jw, lwork);
+    if (jw > nmin) {
+	slaqr4_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sr[
+		kwtop], &si[kwtop], &c__1, &jw, &v[v_offset], ldv, &work[1], 
+		lwork, &infqr);
+    } else {
+	slahqr_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sr[
+		kwtop], &si[kwtop], &c__1, &jw, &v[v_offset], ldv, &infqr);
+    }
+
+/*     ==== STREXC needs a clean margin near the diagonal ==== */
+
+    i__1 = jw - 3;
+    for (j = 1; j <= i__1; ++j) {
+	t[j + 2 + j * t_dim1] = 0.f;
+	t[j + 3 + j * t_dim1] = 0.f;
+/* L10: */
+    }
+    if (jw > 2) {
+	t[jw + (jw - 2) * t_dim1] = 0.f;
+    }
+
+/*     ==== Deflation detection loop ==== */
+
+    *ns = jw;
+    ilst = infqr + 1;
+L20:
+    if (ilst <= *ns) {
+	if (*ns == 1) {
+	    bulge = FALSE_;
+	} else {
+	    bulge = t[*ns + (*ns - 1) * t_dim1] != 0.f;
+	}
+
+/*        ==== Small spike tip test for deflation ==== */
+
+	if (! bulge) {
+
+/*           ==== Real eigenvalue ==== */
+
+	    foo = (r__1 = t[*ns + *ns * t_dim1], dabs(r__1));
+	    if (foo == 0.f) {
+		foo = dabs(s);
+	    }
+/* Computing MAX */
+	    r__2 = smlnum, r__3 = ulp * foo;
+	    if ((r__1 = s * v[*ns * v_dim1 + 1], dabs(r__1)) <= dmax(r__2,
+		    r__3)) {
+
+/*              ==== Deflatable ==== */
+
+		--(*ns);
+	    } else {
+
+/*              ==== Undeflatable.   Move it up out of the way. */
+/*              .    (STREXC can not fail in this case.) ==== */
+
+		ifst = *ns;
+		strexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst, 
+			 &ilst, &work[1], &info);
+		++ilst;
+	    }
+	} else {
+
+/*           ==== Complex conjugate pair ==== */
+
+	    foo = (r__3 = t[*ns + *ns * t_dim1], dabs(r__3)) + sqrt((r__1 = t[
+		    *ns + (*ns - 1) * t_dim1], dabs(r__1))) * sqrt((r__2 = t[*
+		    ns - 1 + *ns * t_dim1], dabs(r__2)));
+	    if (foo == 0.f) {
+		foo = dabs(s);
+	    }
+/* Computing MAX */
+	    r__3 = (r__1 = s * v[*ns * v_dim1 + 1], dabs(r__1)), r__4 = (r__2 
+		    = s * v[(*ns - 1) * v_dim1 + 1], dabs(r__2));
+/* Computing MAX */
+	    r__5 = smlnum, r__6 = ulp * foo;
+	    if (dmax(r__3,r__4) <= dmax(r__5,r__6)) {
+
+/*              ==== Deflatable ==== */
+
+		*ns += -2;
+	    } else {
+
+/*              ==== Undeflatable. Move them up out of the way. */
+/*              .    Fortunately, STREXC does the right thing with */
+/*              .    ILST in case of a rare exchange failure. ==== */
+
+		ifst = *ns;
+		strexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst, 
+			 &ilst, &work[1], &info);
+		ilst += 2;
+	    }
+	}
+
+/*        ==== End deflation detection loop ==== */
+
+	goto L20;
+    }
+
+/*        ==== Return to Hessenberg form ==== */
+
+    if (*ns == 0) {
+	s = 0.f;
+    }
+
+    if (*ns < jw) {
+
+/*        ==== sorting diagonal blocks of T improves accuracy for */
+/*        .    graded matrices.  Bubble sort deals well with */
+/*        .    exchange failures. ==== */
+
+	sorted = FALSE_;
+	i__ = *ns + 1;
+L30:
+	if (sorted) {
+	    goto L50;
+	}
+	sorted = TRUE_;
+
+	kend = i__ - 1;
+	i__ = infqr + 1;
+	if (i__ == *ns) {
+	    k = i__ + 1;
+	} else if (t[i__ + 1 + i__ * t_dim1] == 0.f) {
+	    k = i__ + 1;
+	} else {
+	    k = i__ + 2;
+	}
+L40:
+	if (k <= kend) {
+	    if (k == i__ + 1) {
+		evi = (r__1 = t[i__ + i__ * t_dim1], dabs(r__1));
+	    } else {
+		evi = (r__3 = t[i__ + i__ * t_dim1], dabs(r__3)) + sqrt((r__1 
+			= t[i__ + 1 + i__ * t_dim1], dabs(r__1))) * sqrt((
+			r__2 = t[i__ + (i__ + 1) * t_dim1], dabs(r__2)));
+	    }
+
+	    if (k == kend) {
+		evk = (r__1 = t[k + k * t_dim1], dabs(r__1));
+	    } else if (t[k + 1 + k * t_dim1] == 0.f) {
+		evk = (r__1 = t[k + k * t_dim1], dabs(r__1));
+	    } else {
+		evk = (r__3 = t[k + k * t_dim1], dabs(r__3)) + sqrt((r__1 = t[
+			k + 1 + k * t_dim1], dabs(r__1))) * sqrt((r__2 = t[k 
+			+ (k + 1) * t_dim1], dabs(r__2)));
+	    }
+
+	    if (evi >= evk) {
+		i__ = k;
+	    } else {
+		sorted = FALSE_;
+		ifst = i__;
+		ilst = k;
+		strexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst, 
+			 &ilst, &work[1], &info);
+		if (info == 0) {
+		    i__ = ilst;
+		} else {
+		    i__ = k;
+		}
+	    }
+	    if (i__ == kend) {
+		k = i__ + 1;
+	    } else if (t[i__ + 1 + i__ * t_dim1] == 0.f) {
+		k = i__ + 1;
+	    } else {
+		k = i__ + 2;
+	    }
+	    goto L40;
+	}
+	goto L30;
+L50:
+	;
+    }
+
+/*     ==== Restore shift/eigenvalue array from T ==== */
+
+    i__ = jw;
+L60:
+    if (i__ >= infqr + 1) {
+	if (i__ == infqr + 1) {
+	    sr[kwtop + i__ - 1] = t[i__ + i__ * t_dim1];
+	    si[kwtop + i__ - 1] = 0.f;
+	    --i__;
+	} else if (t[i__ + (i__ - 1) * t_dim1] == 0.f) {
+	    sr[kwtop + i__ - 1] = t[i__ + i__ * t_dim1];
+	    si[kwtop + i__ - 1] = 0.f;
+	    --i__;
+	} else {
+	    aa = t[i__ - 1 + (i__ - 1) * t_dim1];
+	    cc = t[i__ + (i__ - 1) * t_dim1];
+	    bb = t[i__ - 1 + i__ * t_dim1];
+	    dd = t[i__ + i__ * t_dim1];
+	    slanv2_(&aa, &bb, &cc, &dd, &sr[kwtop + i__ - 2], &si[kwtop + i__ 
+		    - 2], &sr[kwtop + i__ - 1], &si[kwtop + i__ - 1], &cs, &
+		    sn);
+	    i__ += -2;
+	}
+	goto L60;
+    }
+
+    if (*ns < jw || s == 0.f) {
+	if (*ns > 1 && s != 0.f) {
+
+/*           ==== Reflect spike back into lower triangle ==== */
+
+	    scopy_(ns, &v[v_offset], ldv, &work[1], &c__1);
+	    beta = work[1];
+	    slarfg_(ns, &beta, &work[2], &c__1, &tau);
+	    work[1] = 1.f;
+
+	    i__1 = jw - 2;
+	    i__2 = jw - 2;
+	    slaset_("L", &i__1, &i__2, &c_b17, &c_b17, &t[t_dim1 + 3], ldt);
+
+	    slarf_("L", ns, &jw, &work[1], &c__1, &tau, &t[t_offset], ldt, &
+		    work[jw + 1]);
+	    slarf_("R", ns, ns, &work[1], &c__1, &tau, &t[t_offset], ldt, &
+		    work[jw + 1]);
+	    slarf_("R", &jw, ns, &work[1], &c__1, &tau, &v[v_offset], ldv, &
+		    work[jw + 1]);
+
+	    i__1 = *lwork - jw;
+	    sgehrd_(&jw, &c__1, ns, &t[t_offset], ldt, &work[1], &work[jw + 1]
+, &i__1, &info);
+	}
+
+/*        ==== Copy updated reduced window into place ==== */
+
+	if (kwtop > 1) {
+	    h__[kwtop + (kwtop - 1) * h_dim1] = s * v[v_dim1 + 1];
+	}
+	slacpy_("U", &jw, &jw, &t[t_offset], ldt, &h__[kwtop + kwtop * h_dim1]
+, ldh);
+	i__1 = jw - 1;
+	i__2 = *ldt + 1;
+	i__3 = *ldh + 1;
+	scopy_(&i__1, &t[t_dim1 + 2], &i__2, &h__[kwtop + 1 + kwtop * h_dim1], 
+		 &i__3);
+
+/*        ==== Accumulate orthogonal matrix in order update */
+/*        .    H and Z, if requested.  ==== */
+
+	if (*ns > 1 && s != 0.f) {
+	    i__1 = *lwork - jw;
+	    sormhr_("R", "N", &jw, ns, &c__1, ns, &t[t_offset], ldt, &work[1], 
+		     &v[v_offset], ldv, &work[jw + 1], &i__1, &info);
+	}
+
+/*        ==== Update vertical slab in H ==== */
+
+	if (*wantt) {
+	    ltop = 1;
+	} else {
+	    ltop = *ktop;
+	}
+	i__1 = kwtop - 1;
+	i__2 = *nv;
+	for (krow = ltop; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow += 
+		i__2) {
+/* Computing MIN */
+	    i__3 = *nv, i__4 = kwtop - krow;
+	    kln = min(i__3,i__4);
+	    sgemm_("N", "N", &kln, &jw, &jw, &c_b18, &h__[krow + kwtop * 
+		    h_dim1], ldh, &v[v_offset], ldv, &c_b17, &wv[wv_offset], 
+		    ldwv);
+	    slacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &h__[krow + kwtop * 
+		    h_dim1], ldh);
+/* L70: */
+	}
+
+/*        ==== Update horizontal slab in H ==== */
+
+	if (*wantt) {
+	    i__2 = *n;
+	    i__1 = *nh;
+	    for (kcol = *kbot + 1; i__1 < 0 ? kcol >= i__2 : kcol <= i__2; 
+		    kcol += i__1) {
+/* Computing MIN */
+		i__3 = *nh, i__4 = *n - kcol + 1;
+		kln = min(i__3,i__4);
+		sgemm_("C", "N", &jw, &kln, &jw, &c_b18, &v[v_offset], ldv, &
+			h__[kwtop + kcol * h_dim1], ldh, &c_b17, &t[t_offset], 
+			 ldt);
+		slacpy_("A", &jw, &kln, &t[t_offset], ldt, &h__[kwtop + kcol *
+			 h_dim1], ldh);
+/* L80: */
+	    }
+	}
+
+/*        ==== Update vertical slab in Z ==== */
+
+	if (*wantz) {
+	    i__1 = *ihiz;
+	    i__2 = *nv;
+	    for (krow = *iloz; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow +=
+		     i__2) {
+/* Computing MIN */
+		i__3 = *nv, i__4 = *ihiz - krow + 1;
+		kln = min(i__3,i__4);
+		sgemm_("N", "N", &kln, &jw, &jw, &c_b18, &z__[krow + kwtop * 
+			z_dim1], ldz, &v[v_offset], ldv, &c_b17, &wv[
+			wv_offset], ldwv);
+		slacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &z__[krow + 
+			kwtop * z_dim1], ldz);
+/* L90: */
+	    }
+	}
+    }
+
+/*     ==== Return the number of deflations ... ==== */
+
+    *nd = jw - *ns;
+
+/*     ==== ... and the number of shifts. (Subtracting */
+/*     .    INFQR from the spike length takes care */
+/*     .    of the case of a rare QR failure while */
+/*     .    calculating eigenvalues of the deflation */
+/*     .    window.)  ==== */
+
+    *ns -= infqr;
+
+/*      ==== Return optimal workspace. ==== */
+
+    work[1] = (real) lwkopt;
+
+/*     ==== End of SLAQR3 ==== */
+
+    return 0;
+} /* slaqr3_ */
-- 
cgit v1.2.3