aboutsummaryrefslogtreecommitdiffstats
path: root/libavfilter/vf_nnedi.c
diff options
context:
space:
mode:
authorPaul B Mahol <onemda@gmail.com>2021-01-19 14:49:45 +0100
committerPaul B Mahol <onemda@gmail.com>2021-01-19 14:59:05 +0100
commit553eb0773763798a6b9656b621cb125e1f6edbcc (patch)
treeb14e1958fda88af25d21ce5040ba78b87e4f3f12 /libavfilter/vf_nnedi.c
parentf3f5ba0bf86ed09af057dd60eefdea45d08cbb91 (diff)
downloadffmpeg-553eb0773763798a6b9656b621cb125e1f6edbcc.tar.gz
avfilter/vf_nnedi: small cleanups
Diffstat (limited to 'libavfilter/vf_nnedi.c')
-rw-r--r--libavfilter/vf_nnedi.c83
1 files changed, 39 insertions, 44 deletions
diff --git a/libavfilter/vf_nnedi.c b/libavfilter/vf_nnedi.c
index 5cedae104b..5863ec478c 100644
--- a/libavfilter/vf_nnedi.c
+++ b/libavfilter/vf_nnedi.c
@@ -37,30 +37,27 @@ static const uint8_t NNEDI_XDIM[] = { 8, 16, 32, 48, 8, 16, 32 };
static const uint8_t NNEDI_YDIM[] = { 6, 6, 6, 6, 4, 4, 4 };
static const uint16_t NNEDI_NNS[] = { 16, 32, 64, 128, 256 };
-static const unsigned NNEDI_DIMS0 = 49 * 4 + 5 * 4 + 9 * 4;
-static const unsigned NNEDI_DIMS0_NEW = 4 * 65 + 4 * 5;
-
typedef struct PrescreenerOldCoefficients {
DECLARE_ALIGNED(32, float, kernel_l0)[4][14 * 4];
- float bias_l0[4];
+ DECLARE_ALIGNED(32, float, bias_l0)[4];
DECLARE_ALIGNED(32, float, kernel_l1)[4][4];
- float bias_l1[4];
+ DECLARE_ALIGNED(32, float, bias_l1)[4];
DECLARE_ALIGNED(32, float, kernel_l2)[4][8];
- float bias_l2[4];
+ DECLARE_ALIGNED(32, float, bias_l2)[4];
} PrescreenerOldCoefficients;
typedef struct PrescreenerNewCoefficients {
DECLARE_ALIGNED(32, float, kernel_l0)[4][16 * 4];
- float bias_l0[4];
+ DECLARE_ALIGNED(32, float, bias_l0)[4];
DECLARE_ALIGNED(32, float, kernel_l1)[4][4];
- float bias_l1[4];
+ DECLARE_ALIGNED(32, float, bias_l1)[4];
} PrescreenerNewCoefficients;
typedef struct PredictorCoefficients {
- int xdim, ydim, nns;
+ int xdim, ydim, nns, nsize;
float *data;
float *softmax_q1;
float *elliott_q1;
@@ -226,7 +223,7 @@ static int query_formats(AVFilterContext *ctx)
}
static float dot_dsp(NNEDIContext *s, const float *kernel, const float *input,
- unsigned n, float scale, float bias)
+ int n, float scale, float bias)
{
float sum;
@@ -235,17 +232,6 @@ static float dot_dsp(NNEDIContext *s, const float *kernel, const float *input,
return sum * scale + bias;
}
-static float dot_product(const float *kernel, const float *input,
- unsigned n, float scale, float bias)
-{
- float sum = 0.0f;
-
- for (int i = 0; i < n; i++)
- sum += kernel[i] * input[i];
-
- return sum * scale + bias;
-}
-
static float elliott(float x)
{
return x / (1.0f + fabsf(x));
@@ -263,7 +249,7 @@ static void process_old(AVFilterContext *ctx,
void *data)
{
NNEDIContext *s = ctx->priv;
- PrescreenerOldCoefficients *m_data = data;
+ const PrescreenerOldCoefficients *const m_data = data;
const float *src_p = src;
// Adjust source pointer to point to top-left of filter window.
@@ -283,12 +269,12 @@ static void process_old(AVFilterContext *ctx,
// Layer 1.
for (int n = 0; n < 4; n++)
- state[n + 4] = dot_product(m_data->kernel_l1[n], state, 4, 1.0f, m_data->bias_l1[n]);
+ state[n + 4] = dot_dsp(s, m_data->kernel_l1[n], state, 4, 1.0f, m_data->bias_l1[n]);
transform_elliott(state + 4, 3);
// Layer 2.
for (int n = 0; n < 4; n++)
- state[n + 8] = dot_product(m_data->kernel_l2[n], state, 8, 1.0f, m_data->bias_l2[n]);
+ state[n + 8] = dot_dsp(s, m_data->kernel_l2[n], state, 8, 1.0f, m_data->bias_l2[n]);
prescreen[j] = FFMAX(state[10], state[11]) <= FFMAX(state[8], state[9]) ? 255 : 0;
}
@@ -300,7 +286,7 @@ static void process_new(AVFilterContext *ctx,
void *data)
{
NNEDIContext *s = ctx->priv;
- PrescreenerNewCoefficients *m_data = data;
+ const PrescreenerNewCoefficients *const m_data = data;
const float *src_p = src;
// Adjust source pointer to point to top-left of filter window.
@@ -318,60 +304,68 @@ static void process_new(AVFilterContext *ctx,
transform_elliott(state, 4);
for (int n = 0; n < 4; n++)
- state[n + 4] = dot_product(m_data->kernel_l1[n], state, 4, 1.0f, m_data->bias_l1[n]);
+ state[n + 4] = dot_dsp(s, m_data->kernel_l1[n], state, 4, 1.0f, m_data->bias_l1[n]);
for (int n = 0; n < 4; n++)
prescreen[j + n] = state[n + 4] > 0.f;
}
}
-static int filter_offset(unsigned nn, PredictorCoefficients *model)
+static int filter_offset(int nn, const PredictorCoefficients *const model)
{
- return nn * model->xdim * model->ydim;
+ return nn * model->nsize;
}
-static const float *softmax_q1_filter(unsigned nn, PredictorCoefficients *model)
+static const float *softmax_q1_filter(int nn,
+ const PredictorCoefficients *const model)
{
return model->softmax_q1 + filter_offset(nn, model);
}
-static const float *elliott_q1_filter(unsigned nn, PredictorCoefficients *model)
+static const float *elliott_q1_filter(int nn,
+ const PredictorCoefficients *const model)
{
return model->elliott_q1 + filter_offset(nn, model);
}
-static const float *softmax_q2_filter(unsigned nn, PredictorCoefficients *model)
+static const float *softmax_q2_filter(int nn,
+ const PredictorCoefficients *const model)
{
return model->softmax_q2 + filter_offset(nn, model);
}
-static const float *elliott_q2_filter(unsigned nn, PredictorCoefficients *model)
+static const float *elliott_q2_filter(int nn,
+ const PredictorCoefficients *const model)
{
return model->elliott_q2 + filter_offset(nn, model);
}
static void gather_input(const float *src, ptrdiff_t src_stride,
float *buf, float mstd[4],
- PredictorCoefficients *model)
+ const PredictorCoefficients *const model)
{
float sum = 0;
float sum_sq = 0;
float tmp;
for (int i = 0; i < model->ydim; i++) {
+ memcpy(buf, src, model->xdim * sizeof(float));
+
for (int j = 0; j < model->xdim; j++) {
- float val = src[i * src_stride + j];
+ const float val = src[j];
- buf[i * model->xdim + j] = val;
sum += val;
sum_sq += val * val;
}
+
+ src += src_stride;
+ buf += model->xdim;
}
- mstd[0] = sum / (model->xdim * model->ydim);
+ mstd[0] = sum / model->nsize;
mstd[3] = 0.f;
- tmp = sum_sq / (model->xdim * model->ydim) - mstd[0] * mstd[0];
+ tmp = sum_sq / model->nsize - mstd[0] * mstd[0];
if (tmp < FLT_EPSILON) {
mstd[1] = 0.0f;
mstd[2] = 0.0f;
@@ -393,7 +387,7 @@ static void transform_softmax_exp(float *input, int size)
}
static void wae5(const float *softmax, const float *el,
- unsigned n, float mstd[4])
+ int n, float mstd[4])
{
float vsum = 0.0f, wsum = 0.0f;
@@ -414,13 +408,13 @@ static void predictor(AVFilterContext *ctx,
void *data, int use_q2)
{
NNEDIContext *s = ctx->priv;
- PredictorCoefficients *model = data;
+ const PredictorCoefficients *const model = data;
const float *src_p = src;
float *dst_p = dst;
// Adjust source pointer to point to top-left of filter window.
const float *window = src_p - (model->ydim / 2) * src_stride - (model->xdim / 2 - 1);
- int filter_size = model->xdim * model->ydim;
+ int filter_size = model->nsize;
int nns = model->nns;
for (int i = 0; i < N; i++) {
@@ -534,7 +528,7 @@ static void write_words(const float *src, uint8_t *dstp,
}
static void interpolation(const void *src, ptrdiff_t src_stride,
- void *dst, const uint8_t *prescreen, unsigned n)
+ void *dst, const uint8_t *prescreen, int n)
{
const float *src_p = src;
float *dst_p = dst;
@@ -844,6 +838,7 @@ static int allocate_model(PredictorCoefficients *coeffs, int xdim, int ydim, int
coeffs->data = data;
coeffs->xdim = xdim;
coeffs->ydim = ydim;
+ coeffs->nsize = xdim * ydim;
coeffs->nns = nns;
coeffs->softmax_q1 = allocate(&data, filter_size);
@@ -966,7 +961,7 @@ static void subtract_mean_new(PrescreenerNewCoefficients *coeffs, float half)
static void subtract_mean_predictor(PredictorCoefficients *model)
{
- int filter_size = model->xdim * model->ydim;
+ int filter_size = model->nsize;
int nns = model->nns;
float softmax_means[256]; // Average of individual softmax filters.
@@ -1013,8 +1008,8 @@ static void subtract_mean_predictor(PredictorCoefficients *model)
mean_bias = mean(model->softmax_bias_q2, nns);
- for (unsigned nn = 0; nn < nns; nn++) {
- for (unsigned k = 0; k < filter_size; k++) {
+ for (int nn = 0; nn < nns; nn++) {
+ for (int k = 0; k < filter_size; k++) {
model->softmax_q2[nn * filter_size + k] -= softmax_means[nn] + mean_filter[k];
model->elliott_q2[nn * filter_size + k] -= elliott_means[nn];
}