diff options
author | Paul B Mahol <onemda@gmail.com> | 2021-01-19 12:15:07 +0100 |
---|---|---|
committer | Paul B Mahol <onemda@gmail.com> | 2021-01-19 12:15:07 +0100 |
commit | f3f5ba0bf86ed09af057dd60eefdea45d08cbb91 (patch) | |
tree | c22d2893a41e563f7c2a94f5b4e268ccd0220f11 /libavfilter/vf_nnedi.c | |
parent | c48110a4a4b3ba87cb3ffe66753bff13c618a04d (diff) | |
download | ffmpeg-f3f5ba0bf86ed09af057dd60eefdea45d08cbb91.tar.gz |
avfilter/vf_nnedi: fix some compilation errors and warnings
Diffstat (limited to 'libavfilter/vf_nnedi.c')
-rw-r--r-- | libavfilter/vf_nnedi.c | 54 |
1 files changed, 27 insertions, 27 deletions
diff --git a/libavfilter/vf_nnedi.c b/libavfilter/vf_nnedi.c index 7f209cb68c..5cedae104b 100644 --- a/libavfilter/vf_nnedi.c +++ b/libavfilter/vf_nnedi.c @@ -325,7 +325,7 @@ static void process_new(AVFilterContext *ctx, } } -static size_t filter_offset(unsigned nn, PredictorCoefficients *model) +static int filter_offset(unsigned nn, PredictorCoefficients *model) { return nn * model->xdim * model->ydim; } @@ -420,8 +420,8 @@ static void predictor(AVFilterContext *ctx, // Adjust source pointer to point to top-left of filter window. const float *window = src_p - (model->ydim / 2) * src_stride - (model->xdim / 2 - 1); - unsigned filter_size = model->xdim * model->ydim; - unsigned nns = model->nns; + int filter_size = model->xdim * model->ydim; + int nns = model->nns; for (int i = 0; i < N; i++) { LOCAL_ALIGNED_32(float, input, [48 * 6]); @@ -816,13 +816,13 @@ static int request_frame(AVFilterLink *link) return 0; } -static void read(float *dst, size_t n, const float **data) +static void copy_weights(float *dst, int n, const float **data) { memcpy(dst, *data, n * sizeof(float)); *data += n; } -static float *allocate(float **ptr, size_t size) +static float *allocate(float **ptr, int size) { float *ret = *ptr; @@ -833,8 +833,8 @@ static float *allocate(float **ptr, size_t size) static int allocate_model(PredictorCoefficients *coeffs, int xdim, int ydim, int nns) { - size_t filter_size = nns * xdim * ydim; - size_t bias_size = nns; + int filter_size = nns * xdim * ydim; + int bias_size = nns; float *data; data = av_malloc_array(filter_size + bias_size, 4 * sizeof(float)); @@ -864,25 +864,25 @@ static int read_weights(AVFilterContext *ctx, const float *bdata) NNEDIContext *s = ctx->priv; int ret; - read(&s->prescreener_old.kernel_l0[0][0], 4 * 48, &bdata); - read(s->prescreener_old.bias_l0, 4, &bdata); + copy_weights(&s->prescreener_old.kernel_l0[0][0], 4 * 48, &bdata); + copy_weights(s->prescreener_old.bias_l0, 4, &bdata); - read(&s->prescreener_old.kernel_l1[0][0], 4 * 4, &bdata); - read(s->prescreener_old.bias_l1, 4, &bdata); + copy_weights(&s->prescreener_old.kernel_l1[0][0], 4 * 4, &bdata); + copy_weights(s->prescreener_old.bias_l1, 4, &bdata); - read(&s->prescreener_old.kernel_l2[0][0], 4 * 8, &bdata); - read(s->prescreener_old.bias_l2, 4, &bdata); + copy_weights(&s->prescreener_old.kernel_l2[0][0], 4 * 8, &bdata); + copy_weights(s->prescreener_old.bias_l2, 4, &bdata); for (int i = 0; i < 3; i++) { PrescreenerNewCoefficients *data = &s->prescreener_new[i]; float kernel_l0_shuffled[4 * 64]; float kernel_l1_shuffled[4 * 4]; - read(kernel_l0_shuffled, 4 * 64, &bdata); - read(data->bias_l0, 4, &bdata); + copy_weights(kernel_l0_shuffled, 4 * 64, &bdata); + copy_weights(data->bias_l0, 4, &bdata); - read(kernel_l1_shuffled, 4 * 4, &bdata); - read(data->bias_l1, 4, &bdata); + copy_weights(kernel_l1_shuffled, 4 * 4, &bdata); + copy_weights(data->bias_l1, 4, &bdata); for (int n = 0; n < 4; n++) { for (int k = 0; k < 64; k++) @@ -902,27 +902,27 @@ static int read_weights(AVFilterContext *ctx, const float *bdata) PredictorCoefficients *model = &s->coeffs[m][i][j]; int xdim = NNEDI_XDIM[j]; int ydim = NNEDI_YDIM[j]; - size_t filter_size = xdim * ydim; + int filter_size = xdim * ydim; ret = allocate_model(model, xdim, ydim, nns); if (ret < 0) return ret; // Quality 1 model. NNS[i] * (XDIM[j] * YDIM[j]) * 2 coefficients. - read(model->softmax_q1, nns * filter_size, &bdata); - read(model->elliott_q1, nns * filter_size, &bdata); + copy_weights(model->softmax_q1, nns * filter_size, &bdata); + copy_weights(model->elliott_q1, nns * filter_size, &bdata); // Quality 1 model bias. NNS[i] * 2 coefficients. - read(model->softmax_bias_q1, nns, &bdata); - read(model->elliott_bias_q1, nns, &bdata); + copy_weights(model->softmax_bias_q1, nns, &bdata); + copy_weights(model->elliott_bias_q1, nns, &bdata); // Quality 2 model. NNS[i] * (XDIM[j] * YDIM[j]) * 2 coefficients. - read(model->softmax_q2, nns * filter_size, &bdata); - read(model->elliott_q2, nns * filter_size, &bdata); + copy_weights(model->softmax_q2, nns * filter_size, &bdata); + copy_weights(model->elliott_q2, nns * filter_size, &bdata); // Quality 2 model bias. NNS[i] * 2 coefficients. - read(model->softmax_bias_q2, nns, &bdata); - read(model->elliott_bias_q2, nns, &bdata); + copy_weights(model->softmax_bias_q2, nns, &bdata); + copy_weights(model->elliott_bias_q2, nns, &bdata); } } } @@ -966,7 +966,7 @@ static void subtract_mean_new(PrescreenerNewCoefficients *coeffs, float half) static void subtract_mean_predictor(PredictorCoefficients *model) { - size_t filter_size = model->xdim * model->ydim; + int filter_size = model->xdim * model->ydim; int nns = model->nns; float softmax_means[256]; // Average of individual softmax filters. |