1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
|
/*-------------------------------------------------------------------------
*
* vacuumparallel.c
* Support routines for parallel vacuum execution.
*
* This file contains routines that are intended to support setting up, using,
* and tearing down a ParallelVacuumState.
*
* In a parallel vacuum, we perform both index bulk deletion and index cleanup
* with parallel worker processes. Individual indexes are processed by one
* vacuum process. ParallelVacuumState contains shared information as well as
* the memory space for storing dead items allocated in the DSM segment. We
* launch parallel worker processes at the start of parallel index
* bulk-deletion and index cleanup and once all indexes are processed, the
* parallel worker processes exit. Each time we process indexes in parallel,
* the parallel context is re-initialized so that the same DSM can be used for
* multiple passes of index bulk-deletion and index cleanup.
*
* Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/commands/vacuumparallel.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/amapi.h"
#include "access/table.h"
#include "access/xact.h"
#include "catalog/index.h"
#include "commands/vacuum.h"
#include "optimizer/paths.h"
#include "pgstat.h"
#include "storage/bufmgr.h"
#include "tcop/tcopprot.h"
#include "utils/lsyscache.h"
#include "utils/rel.h"
/*
* DSM keys for parallel vacuum. Unlike other parallel execution code, since
* we don't need to worry about DSM keys conflicting with plan_node_id we can
* use small integers.
*/
#define PARALLEL_VACUUM_KEY_SHARED 1
#define PARALLEL_VACUUM_KEY_DEAD_ITEMS 2
#define PARALLEL_VACUUM_KEY_QUERY_TEXT 3
#define PARALLEL_VACUUM_KEY_BUFFER_USAGE 4
#define PARALLEL_VACUUM_KEY_WAL_USAGE 5
#define PARALLEL_VACUUM_KEY_INDEX_STATS 6
/*
* Shared information among parallel workers. So this is allocated in the DSM
* segment.
*/
typedef struct PVShared
{
/*
* Target table relid and log level (for messages about parallel workers
* launched during VACUUM VERBOSE). These fields are not modified during
* the parallel vacuum.
*/
Oid relid;
int elevel;
/*
* Fields for both index vacuum and cleanup.
*
* reltuples is the total number of input heap tuples. We set either old
* live tuples in the index vacuum case or the new live tuples in the
* index cleanup case.
*
* estimated_count is true if reltuples is an estimated value. (Note that
* reltuples could be -1 in this case, indicating we have no idea.)
*/
double reltuples;
bool estimated_count;
/*
* In single process vacuum we could consume more memory during index
* vacuuming or cleanup apart from the memory for heap scanning. In
* parallel vacuum, since individual vacuum workers can consume memory
* equal to maintenance_work_mem, the new maintenance_work_mem for each
* worker is set such that the parallel operation doesn't consume more
* memory than single process vacuum.
*/
int maintenance_work_mem_worker;
/*
* The number of buffers each worker's Buffer Access Strategy ring should
* contain.
*/
int ring_nbuffers;
/*
* Shared vacuum cost balance. During parallel vacuum,
* VacuumSharedCostBalance points to this value and it accumulates the
* balance of each parallel vacuum worker.
*/
pg_atomic_uint32 cost_balance;
/*
* Number of active parallel workers. This is used for computing the
* minimum threshold of the vacuum cost balance before a worker sleeps for
* cost-based delay.
*/
pg_atomic_uint32 active_nworkers;
/* Counter for vacuuming and cleanup */
pg_atomic_uint32 idx;
} PVShared;
/* Status used during parallel index vacuum or cleanup */
typedef enum PVIndVacStatus
{
PARALLEL_INDVAC_STATUS_INITIAL = 0,
PARALLEL_INDVAC_STATUS_NEED_BULKDELETE,
PARALLEL_INDVAC_STATUS_NEED_CLEANUP,
PARALLEL_INDVAC_STATUS_COMPLETED
} PVIndVacStatus;
/*
* Struct for index vacuum statistics of an index that is used for parallel vacuum.
* This includes the status of parallel index vacuum as well as index statistics.
*/
typedef struct PVIndStats
{
/*
* The following two fields are set by leader process before executing
* parallel index vacuum or parallel index cleanup. These fields are not
* fixed for the entire VACUUM operation. They are only fixed for an
* individual parallel index vacuum and cleanup.
*
* parallel_workers_can_process is true if both leader and worker can
* process the index, otherwise only leader can process it.
*/
PVIndVacStatus status;
bool parallel_workers_can_process;
/*
* Individual worker or leader stores the result of index vacuum or
* cleanup.
*/
bool istat_updated; /* are the stats updated? */
IndexBulkDeleteResult istat;
} PVIndStats;
/*
* Struct for maintaining a parallel vacuum state. typedef appears in vacuum.h.
*/
struct ParallelVacuumState
{
/* NULL for worker processes */
ParallelContext *pcxt;
/* Parent Heap Relation */
Relation heaprel;
/* Target indexes */
Relation *indrels;
int nindexes;
/* Shared information among parallel vacuum workers */
PVShared *shared;
/*
* Shared index statistics among parallel vacuum workers. The array
* element is allocated for every index, even those indexes where parallel
* index vacuuming is unsafe or not worthwhile (e.g.,
* will_parallel_vacuum[] is false). During parallel vacuum,
* IndexBulkDeleteResult of each index is kept in DSM and is copied into
* local memory at the end of parallel vacuum.
*/
PVIndStats *indstats;
/* Shared dead items space among parallel vacuum workers */
VacDeadItems *dead_items;
/* Points to buffer usage area in DSM */
BufferUsage *buffer_usage;
/* Points to WAL usage area in DSM */
WalUsage *wal_usage;
/*
* False if the index is totally unsuitable target for all parallel
* processing. For example, the index could be <
* min_parallel_index_scan_size cutoff.
*/
bool *will_parallel_vacuum;
/*
* The number of indexes that support parallel index bulk-deletion and
* parallel index cleanup respectively.
*/
int nindexes_parallel_bulkdel;
int nindexes_parallel_cleanup;
int nindexes_parallel_condcleanup;
/* Buffer access strategy used by leader process */
BufferAccessStrategy bstrategy;
/*
* Error reporting state. The error callback is set only for workers
* processes during parallel index vacuum.
*/
char *relnamespace;
char *relname;
char *indname;
PVIndVacStatus status;
};
static int parallel_vacuum_compute_workers(Relation *indrels, int nindexes, int nrequested,
bool *will_parallel_vacuum);
static void parallel_vacuum_process_all_indexes(ParallelVacuumState *pvs, int num_index_scans,
bool vacuum);
static void parallel_vacuum_process_safe_indexes(ParallelVacuumState *pvs);
static void parallel_vacuum_process_unsafe_indexes(ParallelVacuumState *pvs);
static void parallel_vacuum_process_one_index(ParallelVacuumState *pvs, Relation indrel,
PVIndStats *indstats);
static bool parallel_vacuum_index_is_parallel_safe(Relation indrel, int num_index_scans,
bool vacuum);
static void parallel_vacuum_error_callback(void *arg);
/*
* Try to enter parallel mode and create a parallel context. Then initialize
* shared memory state.
*
* On success, return parallel vacuum state. Otherwise return NULL.
*/
ParallelVacuumState *
parallel_vacuum_init(Relation rel, Relation *indrels, int nindexes,
int nrequested_workers, int max_items,
int elevel, BufferAccessStrategy bstrategy)
{
ParallelVacuumState *pvs;
ParallelContext *pcxt;
PVShared *shared;
VacDeadItems *dead_items;
PVIndStats *indstats;
BufferUsage *buffer_usage;
WalUsage *wal_usage;
bool *will_parallel_vacuum;
Size est_indstats_len;
Size est_shared_len;
Size est_dead_items_len;
int nindexes_mwm = 0;
int parallel_workers = 0;
int querylen;
/*
* A parallel vacuum must be requested and there must be indexes on the
* relation
*/
Assert(nrequested_workers >= 0);
Assert(nindexes > 0);
/*
* Compute the number of parallel vacuum workers to launch
*/
will_parallel_vacuum = (bool *) palloc0(sizeof(bool) * nindexes);
parallel_workers = parallel_vacuum_compute_workers(indrels, nindexes,
nrequested_workers,
will_parallel_vacuum);
if (parallel_workers <= 0)
{
/* Can't perform vacuum in parallel -- return NULL */
pfree(will_parallel_vacuum);
return NULL;
}
pvs = (ParallelVacuumState *) palloc0(sizeof(ParallelVacuumState));
pvs->indrels = indrels;
pvs->nindexes = nindexes;
pvs->will_parallel_vacuum = will_parallel_vacuum;
pvs->bstrategy = bstrategy;
pvs->heaprel = rel;
EnterParallelMode();
pcxt = CreateParallelContext("postgres", "parallel_vacuum_main",
parallel_workers);
Assert(pcxt->nworkers > 0);
pvs->pcxt = pcxt;
/* Estimate size for index vacuum stats -- PARALLEL_VACUUM_KEY_INDEX_STATS */
est_indstats_len = mul_size(sizeof(PVIndStats), nindexes);
shm_toc_estimate_chunk(&pcxt->estimator, est_indstats_len);
shm_toc_estimate_keys(&pcxt->estimator, 1);
/* Estimate size for shared information -- PARALLEL_VACUUM_KEY_SHARED */
est_shared_len = sizeof(PVShared);
shm_toc_estimate_chunk(&pcxt->estimator, est_shared_len);
shm_toc_estimate_keys(&pcxt->estimator, 1);
/* Estimate size for dead_items -- PARALLEL_VACUUM_KEY_DEAD_ITEMS */
est_dead_items_len = vac_max_items_to_alloc_size(max_items);
shm_toc_estimate_chunk(&pcxt->estimator, est_dead_items_len);
shm_toc_estimate_keys(&pcxt->estimator, 1);
/*
* Estimate space for BufferUsage and WalUsage --
* PARALLEL_VACUUM_KEY_BUFFER_USAGE and PARALLEL_VACUUM_KEY_WAL_USAGE.
*
* If there are no extensions loaded that care, we could skip this. We
* have no way of knowing whether anyone's looking at pgBufferUsage or
* pgWalUsage, so do it unconditionally.
*/
shm_toc_estimate_chunk(&pcxt->estimator,
mul_size(sizeof(BufferUsage), pcxt->nworkers));
shm_toc_estimate_keys(&pcxt->estimator, 1);
shm_toc_estimate_chunk(&pcxt->estimator,
mul_size(sizeof(WalUsage), pcxt->nworkers));
shm_toc_estimate_keys(&pcxt->estimator, 1);
/* Finally, estimate PARALLEL_VACUUM_KEY_QUERY_TEXT space */
if (debug_query_string)
{
querylen = strlen(debug_query_string);
shm_toc_estimate_chunk(&pcxt->estimator, querylen + 1);
shm_toc_estimate_keys(&pcxt->estimator, 1);
}
else
querylen = 0; /* keep compiler quiet */
InitializeParallelDSM(pcxt);
/* Prepare index vacuum stats */
indstats = (PVIndStats *) shm_toc_allocate(pcxt->toc, est_indstats_len);
MemSet(indstats, 0, est_indstats_len);
for (int i = 0; i < nindexes; i++)
{
Relation indrel = indrels[i];
uint8 vacoptions = indrel->rd_indam->amparallelvacuumoptions;
/*
* Cleanup option should be either disabled, always performing in
* parallel or conditionally performing in parallel.
*/
Assert(((vacoptions & VACUUM_OPTION_PARALLEL_CLEANUP) == 0) ||
((vacoptions & VACUUM_OPTION_PARALLEL_COND_CLEANUP) == 0));
Assert(vacoptions <= VACUUM_OPTION_MAX_VALID_VALUE);
if (!will_parallel_vacuum[i])
continue;
if (indrel->rd_indam->amusemaintenanceworkmem)
nindexes_mwm++;
/*
* Remember the number of indexes that support parallel operation for
* each phase.
*/
if ((vacoptions & VACUUM_OPTION_PARALLEL_BULKDEL) != 0)
pvs->nindexes_parallel_bulkdel++;
if ((vacoptions & VACUUM_OPTION_PARALLEL_CLEANUP) != 0)
pvs->nindexes_parallel_cleanup++;
if ((vacoptions & VACUUM_OPTION_PARALLEL_COND_CLEANUP) != 0)
pvs->nindexes_parallel_condcleanup++;
}
shm_toc_insert(pcxt->toc, PARALLEL_VACUUM_KEY_INDEX_STATS, indstats);
pvs->indstats = indstats;
/* Prepare shared information */
shared = (PVShared *) shm_toc_allocate(pcxt->toc, est_shared_len);
MemSet(shared, 0, est_shared_len);
shared->relid = RelationGetRelid(rel);
shared->elevel = elevel;
shared->maintenance_work_mem_worker =
(nindexes_mwm > 0) ?
maintenance_work_mem / Min(parallel_workers, nindexes_mwm) :
maintenance_work_mem;
/* Use the same buffer size for all workers */
shared->ring_nbuffers = GetAccessStrategyBufferCount(bstrategy);
pg_atomic_init_u32(&(shared->cost_balance), 0);
pg_atomic_init_u32(&(shared->active_nworkers), 0);
pg_atomic_init_u32(&(shared->idx), 0);
shm_toc_insert(pcxt->toc, PARALLEL_VACUUM_KEY_SHARED, shared);
pvs->shared = shared;
/* Prepare the dead_items space */
dead_items = (VacDeadItems *) shm_toc_allocate(pcxt->toc,
est_dead_items_len);
dead_items->max_items = max_items;
dead_items->num_items = 0;
MemSet(dead_items->items, 0, sizeof(ItemPointerData) * max_items);
shm_toc_insert(pcxt->toc, PARALLEL_VACUUM_KEY_DEAD_ITEMS, dead_items);
pvs->dead_items = dead_items;
/*
* Allocate space for each worker's BufferUsage and WalUsage; no need to
* initialize
*/
buffer_usage = shm_toc_allocate(pcxt->toc,
mul_size(sizeof(BufferUsage), pcxt->nworkers));
shm_toc_insert(pcxt->toc, PARALLEL_VACUUM_KEY_BUFFER_USAGE, buffer_usage);
pvs->buffer_usage = buffer_usage;
wal_usage = shm_toc_allocate(pcxt->toc,
mul_size(sizeof(WalUsage), pcxt->nworkers));
shm_toc_insert(pcxt->toc, PARALLEL_VACUUM_KEY_WAL_USAGE, wal_usage);
pvs->wal_usage = wal_usage;
/* Store query string for workers */
if (debug_query_string)
{
char *sharedquery;
sharedquery = (char *) shm_toc_allocate(pcxt->toc, querylen + 1);
memcpy(sharedquery, debug_query_string, querylen + 1);
sharedquery[querylen] = '\0';
shm_toc_insert(pcxt->toc,
PARALLEL_VACUUM_KEY_QUERY_TEXT, sharedquery);
}
/* Success -- return parallel vacuum state */
return pvs;
}
/*
* Destroy the parallel context, and end parallel mode.
*
* Since writes are not allowed during parallel mode, copy the
* updated index statistics from DSM into local memory and then later use that
* to update the index statistics. One might think that we can exit from
* parallel mode, update the index statistics and then destroy parallel
* context, but that won't be safe (see ExitParallelMode).
*/
void
parallel_vacuum_end(ParallelVacuumState *pvs, IndexBulkDeleteResult **istats)
{
Assert(!IsParallelWorker());
/* Copy the updated statistics */
for (int i = 0; i < pvs->nindexes; i++)
{
PVIndStats *indstats = &(pvs->indstats[i]);
if (indstats->istat_updated)
{
istats[i] = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));
memcpy(istats[i], &indstats->istat, sizeof(IndexBulkDeleteResult));
}
else
istats[i] = NULL;
}
DestroyParallelContext(pvs->pcxt);
ExitParallelMode();
pfree(pvs->will_parallel_vacuum);
pfree(pvs);
}
/* Returns the dead items space */
VacDeadItems *
parallel_vacuum_get_dead_items(ParallelVacuumState *pvs)
{
return pvs->dead_items;
}
/*
* Do parallel index bulk-deletion with parallel workers.
*/
void
parallel_vacuum_bulkdel_all_indexes(ParallelVacuumState *pvs, long num_table_tuples,
int num_index_scans)
{
Assert(!IsParallelWorker());
/*
* We can only provide an approximate value of num_heap_tuples, at least
* for now.
*/
pvs->shared->reltuples = num_table_tuples;
pvs->shared->estimated_count = true;
parallel_vacuum_process_all_indexes(pvs, num_index_scans, true);
}
/*
* Do parallel index cleanup with parallel workers.
*/
void
parallel_vacuum_cleanup_all_indexes(ParallelVacuumState *pvs, long num_table_tuples,
int num_index_scans, bool estimated_count)
{
Assert(!IsParallelWorker());
/*
* We can provide a better estimate of total number of surviving tuples
* (we assume indexes are more interested in that than in the number of
* nominally live tuples).
*/
pvs->shared->reltuples = num_table_tuples;
pvs->shared->estimated_count = estimated_count;
parallel_vacuum_process_all_indexes(pvs, num_index_scans, false);
}
/*
* Compute the number of parallel worker processes to request. Both index
* vacuum and index cleanup can be executed with parallel workers.
* The index is eligible for parallel vacuum iff its size is greater than
* min_parallel_index_scan_size as invoking workers for very small indexes
* can hurt performance.
*
* nrequested is the number of parallel workers that user requested. If
* nrequested is 0, we compute the parallel degree based on nindexes, that is
* the number of indexes that support parallel vacuum. This function also
* sets will_parallel_vacuum to remember indexes that participate in parallel
* vacuum.
*/
static int
parallel_vacuum_compute_workers(Relation *indrels, int nindexes, int nrequested,
bool *will_parallel_vacuum)
{
int nindexes_parallel = 0;
int nindexes_parallel_bulkdel = 0;
int nindexes_parallel_cleanup = 0;
int parallel_workers;
/*
* We don't allow performing parallel operation in standalone backend or
* when parallelism is disabled.
*/
if (!IsUnderPostmaster || max_parallel_maintenance_workers == 0)
return 0;
/*
* Compute the number of indexes that can participate in parallel vacuum.
*/
for (int i = 0; i < nindexes; i++)
{
Relation indrel = indrels[i];
uint8 vacoptions = indrel->rd_indam->amparallelvacuumoptions;
/* Skip index that is not a suitable target for parallel index vacuum */
if (vacoptions == VACUUM_OPTION_NO_PARALLEL ||
RelationGetNumberOfBlocks(indrel) < min_parallel_index_scan_size)
continue;
will_parallel_vacuum[i] = true;
if ((vacoptions & VACUUM_OPTION_PARALLEL_BULKDEL) != 0)
nindexes_parallel_bulkdel++;
if (((vacoptions & VACUUM_OPTION_PARALLEL_CLEANUP) != 0) ||
((vacoptions & VACUUM_OPTION_PARALLEL_COND_CLEANUP) != 0))
nindexes_parallel_cleanup++;
}
nindexes_parallel = Max(nindexes_parallel_bulkdel,
nindexes_parallel_cleanup);
/* The leader process takes one index */
nindexes_parallel--;
/* No index supports parallel vacuum */
if (nindexes_parallel <= 0)
return 0;
/* Compute the parallel degree */
parallel_workers = (nrequested > 0) ?
Min(nrequested, nindexes_parallel) : nindexes_parallel;
/* Cap by max_parallel_maintenance_workers */
parallel_workers = Min(parallel_workers, max_parallel_maintenance_workers);
return parallel_workers;
}
/*
* Perform index vacuum or index cleanup with parallel workers. This function
* must be used by the parallel vacuum leader process.
*/
static void
parallel_vacuum_process_all_indexes(ParallelVacuumState *pvs, int num_index_scans,
bool vacuum)
{
int nworkers;
PVIndVacStatus new_status;
Assert(!IsParallelWorker());
if (vacuum)
{
new_status = PARALLEL_INDVAC_STATUS_NEED_BULKDELETE;
/* Determine the number of parallel workers to launch */
nworkers = pvs->nindexes_parallel_bulkdel;
}
else
{
new_status = PARALLEL_INDVAC_STATUS_NEED_CLEANUP;
/* Determine the number of parallel workers to launch */
nworkers = pvs->nindexes_parallel_cleanup;
/* Add conditionally parallel-aware indexes if in the first time call */
if (num_index_scans == 0)
nworkers += pvs->nindexes_parallel_condcleanup;
}
/* The leader process will participate */
nworkers--;
/*
* It is possible that parallel context is initialized with fewer workers
* than the number of indexes that need a separate worker in the current
* phase, so we need to consider it. See
* parallel_vacuum_compute_workers().
*/
nworkers = Min(nworkers, pvs->pcxt->nworkers);
/*
* Set index vacuum status and mark whether parallel vacuum worker can
* process it.
*/
for (int i = 0; i < pvs->nindexes; i++)
{
PVIndStats *indstats = &(pvs->indstats[i]);
Assert(indstats->status == PARALLEL_INDVAC_STATUS_INITIAL);
indstats->status = new_status;
indstats->parallel_workers_can_process =
(pvs->will_parallel_vacuum[i] &&
parallel_vacuum_index_is_parallel_safe(pvs->indrels[i],
num_index_scans,
vacuum));
}
/* Reset the parallel index processing counter */
pg_atomic_write_u32(&(pvs->shared->idx), 0);
/* Setup the shared cost-based vacuum delay and launch workers */
if (nworkers > 0)
{
/* Reinitialize parallel context to relaunch parallel workers */
if (num_index_scans > 0)
ReinitializeParallelDSM(pvs->pcxt);
/*
* Set up shared cost balance and the number of active workers for
* vacuum delay. We need to do this before launching workers as
* otherwise, they might not see the updated values for these
* parameters.
*/
pg_atomic_write_u32(&(pvs->shared->cost_balance), VacuumCostBalance);
pg_atomic_write_u32(&(pvs->shared->active_nworkers), 0);
/*
* The number of workers can vary between bulkdelete and cleanup
* phase.
*/
ReinitializeParallelWorkers(pvs->pcxt, nworkers);
LaunchParallelWorkers(pvs->pcxt);
if (pvs->pcxt->nworkers_launched > 0)
{
/*
* Reset the local cost values for leader backend as we have
* already accumulated the remaining balance of heap.
*/
VacuumCostBalance = 0;
VacuumCostBalanceLocal = 0;
/* Enable shared cost balance for leader backend */
VacuumSharedCostBalance = &(pvs->shared->cost_balance);
VacuumActiveNWorkers = &(pvs->shared->active_nworkers);
}
if (vacuum)
ereport(pvs->shared->elevel,
(errmsg(ngettext("launched %d parallel vacuum worker for index vacuuming (planned: %d)",
"launched %d parallel vacuum workers for index vacuuming (planned: %d)",
pvs->pcxt->nworkers_launched),
pvs->pcxt->nworkers_launched, nworkers)));
else
ereport(pvs->shared->elevel,
(errmsg(ngettext("launched %d parallel vacuum worker for index cleanup (planned: %d)",
"launched %d parallel vacuum workers for index cleanup (planned: %d)",
pvs->pcxt->nworkers_launched),
pvs->pcxt->nworkers_launched, nworkers)));
}
/* Vacuum the indexes that can be processed by only leader process */
parallel_vacuum_process_unsafe_indexes(pvs);
/*
* Join as a parallel worker. The leader vacuums alone processes all
* parallel-safe indexes in the case where no workers are launched.
*/
parallel_vacuum_process_safe_indexes(pvs);
/*
* Next, accumulate buffer and WAL usage. (This must wait for the workers
* to finish, or we might get incomplete data.)
*/
if (nworkers > 0)
{
/* Wait for all vacuum workers to finish */
WaitForParallelWorkersToFinish(pvs->pcxt);
for (int i = 0; i < pvs->pcxt->nworkers_launched; i++)
InstrAccumParallelQuery(&pvs->buffer_usage[i], &pvs->wal_usage[i]);
}
/*
* Reset all index status back to initial (while checking that we have
* vacuumed all indexes).
*/
for (int i = 0; i < pvs->nindexes; i++)
{
PVIndStats *indstats = &(pvs->indstats[i]);
if (indstats->status != PARALLEL_INDVAC_STATUS_COMPLETED)
elog(ERROR, "parallel index vacuum on index \"%s\" is not completed",
RelationGetRelationName(pvs->indrels[i]));
indstats->status = PARALLEL_INDVAC_STATUS_INITIAL;
}
/*
* Carry the shared balance value to heap scan and disable shared costing
*/
if (VacuumSharedCostBalance)
{
VacuumCostBalance = pg_atomic_read_u32(VacuumSharedCostBalance);
VacuumSharedCostBalance = NULL;
VacuumActiveNWorkers = NULL;
}
}
/*
* Index vacuum/cleanup routine used by the leader process and parallel
* vacuum worker processes to vacuum the indexes in parallel.
*/
static void
parallel_vacuum_process_safe_indexes(ParallelVacuumState *pvs)
{
/*
* Increment the active worker count if we are able to launch any worker.
*/
if (VacuumActiveNWorkers)
pg_atomic_add_fetch_u32(VacuumActiveNWorkers, 1);
/* Loop until all indexes are vacuumed */
for (;;)
{
int idx;
PVIndStats *indstats;
/* Get an index number to process */
idx = pg_atomic_fetch_add_u32(&(pvs->shared->idx), 1);
/* Done for all indexes? */
if (idx >= pvs->nindexes)
break;
indstats = &(pvs->indstats[idx]);
/*
* Skip vacuuming index that is unsafe for workers or has an
* unsuitable target for parallel index vacuum (this is vacuumed in
* parallel_vacuum_process_unsafe_indexes() by the leader).
*/
if (!indstats->parallel_workers_can_process)
continue;
/* Do vacuum or cleanup of the index */
parallel_vacuum_process_one_index(pvs, pvs->indrels[idx], indstats);
}
/*
* We have completed the index vacuum so decrement the active worker
* count.
*/
if (VacuumActiveNWorkers)
pg_atomic_sub_fetch_u32(VacuumActiveNWorkers, 1);
}
/*
* Perform parallel vacuuming of indexes in leader process.
*
* Handles index vacuuming (or index cleanup) for indexes that are not
* parallel safe. It's possible that this will vary for a given index, based
* on details like whether we're performing index cleanup right now.
*
* Also performs vacuuming of smaller indexes that fell under the size cutoff
* enforced by parallel_vacuum_compute_workers().
*/
static void
parallel_vacuum_process_unsafe_indexes(ParallelVacuumState *pvs)
{
Assert(!IsParallelWorker());
/*
* Increment the active worker count if we are able to launch any worker.
*/
if (VacuumActiveNWorkers)
pg_atomic_add_fetch_u32(VacuumActiveNWorkers, 1);
for (int i = 0; i < pvs->nindexes; i++)
{
PVIndStats *indstats = &(pvs->indstats[i]);
/* Skip, indexes that are safe for workers */
if (indstats->parallel_workers_can_process)
continue;
/* Do vacuum or cleanup of the index */
parallel_vacuum_process_one_index(pvs, pvs->indrels[i], indstats);
}
/*
* We have completed the index vacuum so decrement the active worker
* count.
*/
if (VacuumActiveNWorkers)
pg_atomic_sub_fetch_u32(VacuumActiveNWorkers, 1);
}
/*
* Vacuum or cleanup index either by leader process or by one of the worker
* process. After vacuuming the index this function copies the index
* statistics returned from ambulkdelete and amvacuumcleanup to the DSM
* segment.
*/
static void
parallel_vacuum_process_one_index(ParallelVacuumState *pvs, Relation indrel,
PVIndStats *indstats)
{
IndexBulkDeleteResult *istat = NULL;
IndexBulkDeleteResult *istat_res;
IndexVacuumInfo ivinfo;
/*
* Update the pointer to the corresponding bulk-deletion result if someone
* has already updated it
*/
if (indstats->istat_updated)
istat = &(indstats->istat);
ivinfo.index = indrel;
ivinfo.heaprel = pvs->heaprel;
ivinfo.analyze_only = false;
ivinfo.report_progress = false;
ivinfo.message_level = DEBUG2;
ivinfo.estimated_count = pvs->shared->estimated_count;
ivinfo.num_heap_tuples = pvs->shared->reltuples;
ivinfo.strategy = pvs->bstrategy;
/* Update error traceback information */
pvs->indname = pstrdup(RelationGetRelationName(indrel));
pvs->status = indstats->status;
switch (indstats->status)
{
case PARALLEL_INDVAC_STATUS_NEED_BULKDELETE:
istat_res = vac_bulkdel_one_index(&ivinfo, istat, pvs->dead_items);
break;
case PARALLEL_INDVAC_STATUS_NEED_CLEANUP:
istat_res = vac_cleanup_one_index(&ivinfo, istat);
break;
default:
elog(ERROR, "unexpected parallel vacuum index status %d for index \"%s\"",
indstats->status,
RelationGetRelationName(indrel));
}
/*
* Copy the index bulk-deletion result returned from ambulkdelete and
* amvacuumcleanup to the DSM segment if it's the first cycle because they
* allocate locally and it's possible that an index will be vacuumed by a
* different vacuum process the next cycle. Copying the result normally
* happens only the first time an index is vacuumed. For any additional
* vacuum pass, we directly point to the result on the DSM segment and
* pass it to vacuum index APIs so that workers can update it directly.
*
* Since all vacuum workers write the bulk-deletion result at different
* slots we can write them without locking.
*/
if (!indstats->istat_updated && istat_res != NULL)
{
memcpy(&(indstats->istat), istat_res, sizeof(IndexBulkDeleteResult));
indstats->istat_updated = true;
/* Free the locally-allocated bulk-deletion result */
pfree(istat_res);
}
/*
* Update the status to completed. No need to lock here since each worker
* touches different indexes.
*/
indstats->status = PARALLEL_INDVAC_STATUS_COMPLETED;
/* Reset error traceback information */
pvs->status = PARALLEL_INDVAC_STATUS_COMPLETED;
pfree(pvs->indname);
pvs->indname = NULL;
}
/*
* Returns false, if the given index can't participate in the next execution of
* parallel index vacuum or parallel index cleanup.
*/
static bool
parallel_vacuum_index_is_parallel_safe(Relation indrel, int num_index_scans,
bool vacuum)
{
uint8 vacoptions;
vacoptions = indrel->rd_indam->amparallelvacuumoptions;
/* In parallel vacuum case, check if it supports parallel bulk-deletion */
if (vacuum)
return ((vacoptions & VACUUM_OPTION_PARALLEL_BULKDEL) != 0);
/* Not safe, if the index does not support parallel cleanup */
if (((vacoptions & VACUUM_OPTION_PARALLEL_CLEANUP) == 0) &&
((vacoptions & VACUUM_OPTION_PARALLEL_COND_CLEANUP) == 0))
return false;
/*
* Not safe, if the index supports parallel cleanup conditionally, but we
* have already processed the index (for bulkdelete). We do this to avoid
* the need to invoke workers when parallel index cleanup doesn't need to
* scan the index. See the comments for option
* VACUUM_OPTION_PARALLEL_COND_CLEANUP to know when indexes support
* parallel cleanup conditionally.
*/
if (num_index_scans > 0 &&
((vacoptions & VACUUM_OPTION_PARALLEL_COND_CLEANUP) != 0))
return false;
return true;
}
/*
* Perform work within a launched parallel process.
*
* Since parallel vacuum workers perform only index vacuum or index cleanup,
* we don't need to report progress information.
*/
void
parallel_vacuum_main(dsm_segment *seg, shm_toc *toc)
{
ParallelVacuumState pvs;
Relation rel;
Relation *indrels;
PVIndStats *indstats;
PVShared *shared;
VacDeadItems *dead_items;
BufferUsage *buffer_usage;
WalUsage *wal_usage;
int nindexes;
char *sharedquery;
ErrorContextCallback errcallback;
/*
* A parallel vacuum worker must have only PROC_IN_VACUUM flag since we
* don't support parallel vacuum for autovacuum as of now.
*/
Assert(MyProc->statusFlags == PROC_IN_VACUUM);
elog(DEBUG1, "starting parallel vacuum worker");
shared = (PVShared *) shm_toc_lookup(toc, PARALLEL_VACUUM_KEY_SHARED, false);
/* Set debug_query_string for individual workers */
sharedquery = shm_toc_lookup(toc, PARALLEL_VACUUM_KEY_QUERY_TEXT, true);
debug_query_string = sharedquery;
pgstat_report_activity(STATE_RUNNING, debug_query_string);
/*
* Open table. The lock mode is the same as the leader process. It's
* okay because the lock mode does not conflict among the parallel
* workers.
*/
rel = table_open(shared->relid, ShareUpdateExclusiveLock);
/*
* Open all indexes. indrels are sorted in order by OID, which should be
* matched to the leader's one.
*/
vac_open_indexes(rel, RowExclusiveLock, &nindexes, &indrels);
Assert(nindexes > 0);
if (shared->maintenance_work_mem_worker > 0)
maintenance_work_mem = shared->maintenance_work_mem_worker;
/* Set index statistics */
indstats = (PVIndStats *) shm_toc_lookup(toc,
PARALLEL_VACUUM_KEY_INDEX_STATS,
false);
/* Set dead_items space */
dead_items = (VacDeadItems *) shm_toc_lookup(toc,
PARALLEL_VACUUM_KEY_DEAD_ITEMS,
false);
/* Set cost-based vacuum delay */
VacuumUpdateCosts();
VacuumCostBalance = 0;
VacuumPageHit = 0;
VacuumPageMiss = 0;
VacuumPageDirty = 0;
VacuumCostBalanceLocal = 0;
VacuumSharedCostBalance = &(shared->cost_balance);
VacuumActiveNWorkers = &(shared->active_nworkers);
/* Set parallel vacuum state */
pvs.indrels = indrels;
pvs.nindexes = nindexes;
pvs.indstats = indstats;
pvs.shared = shared;
pvs.dead_items = dead_items;
pvs.relnamespace = get_namespace_name(RelationGetNamespace(rel));
pvs.relname = pstrdup(RelationGetRelationName(rel));
pvs.heaprel = rel;
/* These fields will be filled during index vacuum or cleanup */
pvs.indname = NULL;
pvs.status = PARALLEL_INDVAC_STATUS_INITIAL;
/* Each parallel VACUUM worker gets its own access strategy. */
pvs.bstrategy = GetAccessStrategyWithSize(BAS_VACUUM,
shared->ring_nbuffers * (BLCKSZ / 1024));
/* Setup error traceback support for ereport() */
errcallback.callback = parallel_vacuum_error_callback;
errcallback.arg = &pvs;
errcallback.previous = error_context_stack;
error_context_stack = &errcallback;
/* Prepare to track buffer usage during parallel execution */
InstrStartParallelQuery();
/* Process indexes to perform vacuum/cleanup */
parallel_vacuum_process_safe_indexes(&pvs);
/* Report buffer/WAL usage during parallel execution */
buffer_usage = shm_toc_lookup(toc, PARALLEL_VACUUM_KEY_BUFFER_USAGE, false);
wal_usage = shm_toc_lookup(toc, PARALLEL_VACUUM_KEY_WAL_USAGE, false);
InstrEndParallelQuery(&buffer_usage[ParallelWorkerNumber],
&wal_usage[ParallelWorkerNumber]);
/* Pop the error context stack */
error_context_stack = errcallback.previous;
vac_close_indexes(nindexes, indrels, RowExclusiveLock);
table_close(rel, ShareUpdateExclusiveLock);
FreeAccessStrategy(pvs.bstrategy);
}
/*
* Error context callback for errors occurring during parallel index vacuum.
* The error context messages should match the messages set in the lazy vacuum
* error context. If you change this function, change vacuum_error_callback()
* as well.
*/
static void
parallel_vacuum_error_callback(void *arg)
{
ParallelVacuumState *errinfo = arg;
switch (errinfo->status)
{
case PARALLEL_INDVAC_STATUS_NEED_BULKDELETE:
errcontext("while vacuuming index \"%s\" of relation \"%s.%s\"",
errinfo->indname,
errinfo->relnamespace,
errinfo->relname);
break;
case PARALLEL_INDVAC_STATUS_NEED_CLEANUP:
errcontext("while cleaning up index \"%s\" of relation \"%s.%s\"",
errinfo->indname,
errinfo->relnamespace,
errinfo->relname);
break;
case PARALLEL_INDVAC_STATUS_INITIAL:
case PARALLEL_INDVAC_STATUS_COMPLETED:
default:
return;
}
}
|