1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
|
/*-------------------------------------------------------------------------
*
* async.c
* Asynchronous notification: NOTIFY, LISTEN, UNLISTEN
*
* Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/commands/async.c
*
*-------------------------------------------------------------------------
*/
/*-------------------------------------------------------------------------
* Async Notification Model as of 9.0:
*
* 1. Multiple backends on same machine. Multiple backends listening on
* several channels. (Channels are also called "conditions" in other
* parts of the code.)
*
* 2. There is one central queue in disk-based storage (directory pg_notify/),
* with actively-used pages mapped into shared memory by the slru.c module.
* All notification messages are placed in the queue and later read out
* by listening backends.
*
* There is no central knowledge of which backend listens on which channel;
* every backend has its own list of interesting channels.
*
* Although there is only one queue, notifications are treated as being
* database-local; this is done by including the sender's database OID
* in each notification message. Listening backends ignore messages
* that don't match their database OID. This is important because it
* ensures senders and receivers have the same database encoding and won't
* misinterpret non-ASCII text in the channel name or payload string.
*
* Since notifications are not expected to survive database crashes,
* we can simply clean out the pg_notify data at any reboot, and there
* is no need for WAL support or fsync'ing.
*
* 3. Every backend that is listening on at least one channel registers by
* entering its PID into the array in AsyncQueueControl. It then scans all
* incoming notifications in the central queue and first compares the
* database OID of the notification with its own database OID and then
* compares the notified channel with the list of channels that it listens
* to. In case there is a match it delivers the notification event to its
* frontend. Non-matching events are simply skipped.
*
* 4. The NOTIFY statement (routine Async_Notify) stores the notification in
* a backend-local list which will not be processed until transaction end.
*
* Duplicate notifications from the same transaction are sent out as one
* notification only. This is done to save work when for example a trigger
* on a 2 million row table fires a notification for each row that has been
* changed. If the application needs to receive every single notification
* that has been sent, it can easily add some unique string into the extra
* payload parameter.
*
* When the transaction is ready to commit, PreCommit_Notify() adds the
* pending notifications to the head of the queue. The head pointer of the
* queue always points to the next free position and a position is just a
* page number and the offset in that page. This is done before marking the
* transaction as committed in clog. If we run into problems writing the
* notifications, we can still call elog(ERROR, ...) and the transaction
* will roll back.
*
* Once we have put all of the notifications into the queue, we return to
* CommitTransaction() which will then do the actual transaction commit.
*
* After commit we are called another time (AtCommit_Notify()). Here we
* make any actual updates to the effective listen state (listenChannels).
* Then we signal any backends that may be interested in our messages
* (including our own backend, if listening). This is done by
* SignalBackends(), which scans the list of listening backends and sends a
* PROCSIG_NOTIFY_INTERRUPT signal to every listening backend (we don't
* know which backend is listening on which channel so we must signal them
* all). We can exclude backends that are already up to date, though, and
* we can also exclude backends that are in other databases (unless they
* are way behind and should be kicked to make them advance their
* pointers).
*
* Finally, after we are out of the transaction altogether and about to go
* idle, we scan the queue for messages that need to be sent to our
* frontend (which might be notifies from other backends, or self-notifies
* from our own). This step is not part of the CommitTransaction sequence
* for two important reasons. First, we could get errors while sending
* data to our frontend, and it's really bad for errors to happen in
* post-commit cleanup. Second, in cases where a procedure issues commits
* within a single frontend command, we don't want to send notifies to our
* frontend until the command is done; but notifies to other backends
* should go out immediately after each commit.
*
* 5. Upon receipt of a PROCSIG_NOTIFY_INTERRUPT signal, the signal handler
* sets the process's latch, which triggers the event to be processed
* immediately if this backend is idle (i.e., it is waiting for a frontend
* command and is not within a transaction block. C.f.
* ProcessClientReadInterrupt()). Otherwise the handler may only set a
* flag, which will cause the processing to occur just before we next go
* idle.
*
* Inbound-notify processing consists of reading all of the notifications
* that have arrived since scanning last time. We read every notification
* until we reach either a notification from an uncommitted transaction or
* the head pointer's position.
*
* 6. To avoid SLRU wraparound and limit disk space consumption, the tail
* pointer needs to be advanced so that old pages can be truncated.
* This is relatively expensive (notably, it requires an exclusive lock),
* so we don't want to do it often. We make sending backends do this work
* if they advanced the queue head into a new page, but only once every
* QUEUE_CLEANUP_DELAY pages.
*
* An application that listens on the same channel it notifies will get
* NOTIFY messages for its own NOTIFYs. These can be ignored, if not useful,
* by comparing be_pid in the NOTIFY message to the application's own backend's
* PID. (As of FE/BE protocol 2.0, the backend's PID is provided to the
* frontend during startup.) The above design guarantees that notifies from
* other backends will never be missed by ignoring self-notifies.
*
* The amount of shared memory used for notify management (NUM_NOTIFY_BUFFERS)
* can be varied without affecting anything but performance. The maximum
* amount of notification data that can be queued at one time is determined
* by slru.c's wraparound limit; see QUEUE_MAX_PAGE below.
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <limits.h>
#include <unistd.h>
#include <signal.h>
#include "access/parallel.h"
#include "access/slru.h"
#include "access/transam.h"
#include "access/xact.h"
#include "catalog/pg_database.h"
#include "commands/async.h"
#include "common/hashfn.h"
#include "funcapi.h"
#include "libpq/libpq.h"
#include "libpq/pqformat.h"
#include "miscadmin.h"
#include "storage/ipc.h"
#include "storage/lmgr.h"
#include "storage/proc.h"
#include "storage/procarray.h"
#include "storage/procsignal.h"
#include "storage/sinval.h"
#include "tcop/tcopprot.h"
#include "utils/builtins.h"
#include "utils/memutils.h"
#include "utils/ps_status.h"
#include "utils/snapmgr.h"
#include "utils/timestamp.h"
/*
* Maximum size of a NOTIFY payload, including terminating NULL. This
* must be kept small enough so that a notification message fits on one
* SLRU page. The magic fudge factor here is noncritical as long as it's
* more than AsyncQueueEntryEmptySize --- we make it significantly bigger
* than that, so changes in that data structure won't affect user-visible
* restrictions.
*/
#define NOTIFY_PAYLOAD_MAX_LENGTH (BLCKSZ - NAMEDATALEN - 128)
/*
* Struct representing an entry in the global notify queue
*
* This struct declaration has the maximal length, but in a real queue entry
* the data area is only big enough for the actual channel and payload strings
* (each null-terminated). AsyncQueueEntryEmptySize is the minimum possible
* entry size, if both channel and payload strings are empty (but note it
* doesn't include alignment padding).
*
* The "length" field should always be rounded up to the next QUEUEALIGN
* multiple so that all fields are properly aligned.
*/
typedef struct AsyncQueueEntry
{
int length; /* total allocated length of entry */
Oid dboid; /* sender's database OID */
TransactionId xid; /* sender's XID */
int32 srcPid; /* sender's PID */
char data[NAMEDATALEN + NOTIFY_PAYLOAD_MAX_LENGTH];
} AsyncQueueEntry;
/* Currently, no field of AsyncQueueEntry requires more than int alignment */
#define QUEUEALIGN(len) INTALIGN(len)
#define AsyncQueueEntryEmptySize (offsetof(AsyncQueueEntry, data) + 2)
/*
* Struct describing a queue position, and assorted macros for working with it
*/
typedef struct QueuePosition
{
int page; /* SLRU page number */
int offset; /* byte offset within page */
} QueuePosition;
#define QUEUE_POS_PAGE(x) ((x).page)
#define QUEUE_POS_OFFSET(x) ((x).offset)
#define SET_QUEUE_POS(x,y,z) \
do { \
(x).page = (y); \
(x).offset = (z); \
} while (0)
#define QUEUE_POS_EQUAL(x,y) \
((x).page == (y).page && (x).offset == (y).offset)
#define QUEUE_POS_IS_ZERO(x) \
((x).page == 0 && (x).offset == 0)
/* choose logically smaller QueuePosition */
#define QUEUE_POS_MIN(x,y) \
(asyncQueuePagePrecedes((x).page, (y).page) ? (x) : \
(x).page != (y).page ? (y) : \
(x).offset < (y).offset ? (x) : (y))
/* choose logically larger QueuePosition */
#define QUEUE_POS_MAX(x,y) \
(asyncQueuePagePrecedes((x).page, (y).page) ? (y) : \
(x).page != (y).page ? (x) : \
(x).offset > (y).offset ? (x) : (y))
/*
* Parameter determining how often we try to advance the tail pointer:
* we do that after every QUEUE_CLEANUP_DELAY pages of NOTIFY data. This is
* also the distance by which a backend in another database needs to be
* behind before we'll decide we need to wake it up to advance its pointer.
*
* Resist the temptation to make this really large. While that would save
* work in some places, it would add cost in others. In particular, this
* should likely be less than NUM_NOTIFY_BUFFERS, to ensure that backends
* catch up before the pages they'll need to read fall out of SLRU cache.
*/
#define QUEUE_CLEANUP_DELAY 4
/*
* Struct describing a listening backend's status
*/
typedef struct QueueBackendStatus
{
int32 pid; /* either a PID or InvalidPid */
Oid dboid; /* backend's database OID, or InvalidOid */
BackendId nextListener; /* id of next listener, or InvalidBackendId */
QueuePosition pos; /* backend has read queue up to here */
} QueueBackendStatus;
/*
* Shared memory state for LISTEN/NOTIFY (excluding its SLRU stuff)
*
* The AsyncQueueControl structure is protected by the NotifyQueueLock and
* NotifyQueueTailLock.
*
* When holding NotifyQueueLock in SHARED mode, backends may only inspect
* their own entries as well as the head and tail pointers. Consequently we
* can allow a backend to update its own record while holding only SHARED lock
* (since no other backend will inspect it).
*
* When holding NotifyQueueLock in EXCLUSIVE mode, backends can inspect the
* entries of other backends and also change the head pointer. When holding
* both NotifyQueueLock and NotifyQueueTailLock in EXCLUSIVE mode, backends
* can change the tail pointers.
*
* NotifySLRULock is used as the control lock for the pg_notify SLRU buffers.
* In order to avoid deadlocks, whenever we need multiple locks, we first get
* NotifyQueueTailLock, then NotifyQueueLock, and lastly NotifySLRULock.
*
* Each backend uses the backend[] array entry with index equal to its
* BackendId (which can range from 1 to MaxBackends). We rely on this to make
* SendProcSignal fast.
*
* The backend[] array entries for actively-listening backends are threaded
* together using firstListener and the nextListener links, so that we can
* scan them without having to iterate over inactive entries. We keep this
* list in order by BackendId so that the scan is cache-friendly when there
* are many active entries.
*/
typedef struct AsyncQueueControl
{
QueuePosition head; /* head points to the next free location */
QueuePosition tail; /* tail must be <= the queue position of every
* listening backend */
int stopPage; /* oldest unrecycled page; must be <=
* tail.page */
BackendId firstListener; /* id of first listener, or InvalidBackendId */
TimestampTz lastQueueFillWarn; /* time of last queue-full msg */
QueueBackendStatus backend[FLEXIBLE_ARRAY_MEMBER];
/* backend[0] is not used; used entries are from [1] to [MaxBackends] */
} AsyncQueueControl;
static __thread AsyncQueueControl *asyncQueueControl;
#define QUEUE_HEAD (asyncQueueControl->head)
#define QUEUE_TAIL (asyncQueueControl->tail)
#define QUEUE_STOP_PAGE (asyncQueueControl->stopPage)
#define QUEUE_FIRST_LISTENER (asyncQueueControl->firstListener)
#define QUEUE_BACKEND_PID(i) (asyncQueueControl->backend[i].pid)
#define QUEUE_BACKEND_DBOID(i) (asyncQueueControl->backend[i].dboid)
#define QUEUE_NEXT_LISTENER(i) (asyncQueueControl->backend[i].nextListener)
#define QUEUE_BACKEND_POS(i) (asyncQueueControl->backend[i].pos)
/*
* The SLRU buffer area through which we access the notification queue
*/
static __thread SlruCtlData NotifyCtlData;
#define NotifyCtl (&NotifyCtlData)
#define QUEUE_PAGESIZE BLCKSZ
#define QUEUE_FULL_WARN_INTERVAL 5000 /* warn at most once every 5s */
/*
* Use segments 0000 through FFFF. Each contains SLRU_PAGES_PER_SEGMENT pages
* which gives us the pages from 0 to SLRU_PAGES_PER_SEGMENT * 0x10000 - 1.
* We could use as many segments as SlruScanDirectory() allows, but this gives
* us so much space already that it doesn't seem worth the trouble.
*
* The most data we can have in the queue at a time is QUEUE_MAX_PAGE/2
* pages, because more than that would confuse slru.c into thinking there
* was a wraparound condition. With the default BLCKSZ this means there
* can be up to 8GB of queued-and-not-read data.
*
* Note: it's possible to redefine QUEUE_MAX_PAGE with a smaller multiple of
* SLRU_PAGES_PER_SEGMENT, for easier testing of queue-full behaviour.
*/
#define QUEUE_MAX_PAGE (SLRU_PAGES_PER_SEGMENT * 0x10000 - 1)
/*
* listenChannels identifies the channels we are actually listening to
* (ie, have committed a LISTEN on). It is a simple list of channel names,
* allocated in TopMemoryContext.
*/
static __thread List *listenChannels = NIL; /* list of C strings */
/*
* State for pending LISTEN/UNLISTEN actions consists of an ordered list of
* all actions requested in the current transaction. As explained above,
* we don't actually change listenChannels until we reach transaction commit.
*
* The list is kept in CurTransactionContext. In subtransactions, each
* subtransaction has its own list in its own CurTransactionContext, but
* successful subtransactions attach their lists to their parent's list.
* Failed subtransactions simply discard their lists.
*/
typedef enum
{
LISTEN_LISTEN,
LISTEN_UNLISTEN,
LISTEN_UNLISTEN_ALL
} ListenActionKind;
typedef struct
{
ListenActionKind action;
char channel[FLEXIBLE_ARRAY_MEMBER]; /* nul-terminated string */
} ListenAction;
typedef struct ActionList
{
int nestingLevel; /* current transaction nesting depth */
List *actions; /* list of ListenAction structs */
struct ActionList *upper; /* details for upper transaction levels */
} ActionList;
static __thread ActionList *pendingActions = NULL;
/*
* State for outbound notifies consists of a list of all channels+payloads
* NOTIFYed in the current transaction. We do not actually perform a NOTIFY
* until and unless the transaction commits. pendingNotifies is NULL if no
* NOTIFYs have been done in the current (sub) transaction.
*
* We discard duplicate notify events issued in the same transaction.
* Hence, in addition to the list proper (which we need to track the order
* of the events, since we guarantee to deliver them in order), we build a
* hash table which we can probe to detect duplicates. Since building the
* hash table is somewhat expensive, we do so only once we have at least
* MIN_HASHABLE_NOTIFIES events queued in the current (sub) transaction;
* before that we just scan the events linearly.
*
* The list is kept in CurTransactionContext. In subtransactions, each
* subtransaction has its own list in its own CurTransactionContext, but
* successful subtransactions add their entries to their parent's list.
* Failed subtransactions simply discard their lists. Since these lists
* are independent, there may be notify events in a subtransaction's list
* that duplicate events in some ancestor (sub) transaction; we get rid of
* the dups when merging the subtransaction's list into its parent's.
*
* Note: the action and notify lists do not interact within a transaction.
* In particular, if a transaction does NOTIFY and then LISTEN on the same
* condition name, it will get a self-notify at commit. This is a bit odd
* but is consistent with our historical behavior.
*/
typedef struct Notification
{
uint16 channel_len; /* length of channel-name string */
uint16 payload_len; /* length of payload string */
/* null-terminated channel name, then null-terminated payload follow */
char data[FLEXIBLE_ARRAY_MEMBER];
} Notification;
typedef struct NotificationList
{
int nestingLevel; /* current transaction nesting depth */
List *events; /* list of Notification structs */
HTAB *hashtab; /* hash of NotificationHash structs, or NULL */
struct NotificationList *upper; /* details for upper transaction levels */
} NotificationList;
#define MIN_HASHABLE_NOTIFIES 16 /* threshold to build hashtab */
typedef struct NotificationHash
{
Notification *event; /* => the actual Notification struct */
} NotificationHash;
static __thread NotificationList *pendingNotifies = NULL;
/*
* Inbound notifications are initially processed by HandleNotifyInterrupt(),
* called from inside a signal handler. That just sets the
* notifyInterruptPending flag and sets the process
* latch. ProcessNotifyInterrupt() will then be called whenever it's safe to
* actually deal with the interrupt.
*/
__thread volatile sig_atomic_t notifyInterruptPending = false;
/* True if we've registered an on_shmem_exit cleanup */
static __thread bool unlistenExitRegistered = false;
/* True if we're currently registered as a listener in asyncQueueControl */
static __thread bool amRegisteredListener = false;
/* have we advanced to a page that's a multiple of QUEUE_CLEANUP_DELAY? */
static __thread bool tryAdvanceTail = false;
/* GUC parameter */
__thread bool Trace_notify = false;
/* local function prototypes */
static int asyncQueuePageDiff(int p, int q);
static bool asyncQueuePagePrecedes(int p, int q);
static void queue_listen(ListenActionKind action, const char *channel);
static void Async_UnlistenOnExit(int code, Datum arg);
static void Exec_ListenPreCommit(void);
static void Exec_ListenCommit(const char *channel);
static void Exec_UnlistenCommit(const char *channel);
static void Exec_UnlistenAllCommit(void);
static bool IsListeningOn(const char *channel);
static void asyncQueueUnregister(void);
static bool asyncQueueIsFull(void);
static bool asyncQueueAdvance(volatile QueuePosition *position, int entryLength);
static void asyncQueueNotificationToEntry(Notification *n, AsyncQueueEntry *qe);
static ListCell *asyncQueueAddEntries(ListCell *nextNotify);
static double asyncQueueUsage(void);
static void asyncQueueFillWarning(void);
static void SignalBackends(void);
static void asyncQueueReadAllNotifications(void);
static bool asyncQueueProcessPageEntries(volatile QueuePosition *current,
QueuePosition stop,
char *page_buffer,
Snapshot snapshot);
static void asyncQueueAdvanceTail(void);
static void ProcessIncomingNotify(bool flush);
static bool AsyncExistsPendingNotify(Notification *n);
static void AddEventToPendingNotifies(Notification *n);
static uint32 notification_hash(const void *key, Size keysize);
static int notification_match(const void *key1, const void *key2, Size keysize);
static void ClearPendingActionsAndNotifies(void);
/*
* Compute the difference between two queue page numbers (i.e., p - q),
* accounting for wraparound.
*/
static int
asyncQueuePageDiff(int p, int q)
{
int diff;
/*
* We have to compare modulo (QUEUE_MAX_PAGE+1)/2. Both inputs should be
* in the range 0..QUEUE_MAX_PAGE.
*/
Assert(p >= 0 && p <= QUEUE_MAX_PAGE);
Assert(q >= 0 && q <= QUEUE_MAX_PAGE);
diff = p - q;
if (diff >= ((QUEUE_MAX_PAGE + 1) / 2))
diff -= QUEUE_MAX_PAGE + 1;
else if (diff < -((QUEUE_MAX_PAGE + 1) / 2))
diff += QUEUE_MAX_PAGE + 1;
return diff;
}
/*
* Is p < q, accounting for wraparound?
*
* Since asyncQueueIsFull() blocks creation of a page that could precede any
* extant page, we need not assess entries within a page.
*/
static bool
asyncQueuePagePrecedes(int p, int q)
{
return asyncQueuePageDiff(p, q) < 0;
}
/*
* Report space needed for our shared memory area
*/
Size
AsyncShmemSize(void)
{
Size size;
/* This had better match AsyncShmemInit */
size = mul_size(MaxBackends + 1, sizeof(QueueBackendStatus));
size = add_size(size, offsetof(AsyncQueueControl, backend));
size = add_size(size, SimpleLruShmemSize(NUM_NOTIFY_BUFFERS, 0));
return size;
}
/*
* Initialize our shared memory area
*/
void
AsyncShmemInit(void)
{
bool found;
Size size;
/*
* Create or attach to the AsyncQueueControl structure.
*
* The used entries in the backend[] array run from 1 to MaxBackends; the
* zero'th entry is unused but must be allocated.
*/
size = mul_size(MaxBackends + 1, sizeof(QueueBackendStatus));
size = add_size(size, offsetof(AsyncQueueControl, backend));
asyncQueueControl = (AsyncQueueControl *)
ShmemInitStruct("Async Queue Control", size, &found);
if (!found)
{
/* First time through, so initialize it */
SET_QUEUE_POS(QUEUE_HEAD, 0, 0);
SET_QUEUE_POS(QUEUE_TAIL, 0, 0);
QUEUE_STOP_PAGE = 0;
QUEUE_FIRST_LISTENER = InvalidBackendId;
asyncQueueControl->lastQueueFillWarn = 0;
/* zero'th entry won't be used, but let's initialize it anyway */
for (int i = 0; i <= MaxBackends; i++)
{
QUEUE_BACKEND_PID(i) = InvalidPid;
QUEUE_BACKEND_DBOID(i) = InvalidOid;
QUEUE_NEXT_LISTENER(i) = InvalidBackendId;
SET_QUEUE_POS(QUEUE_BACKEND_POS(i), 0, 0);
}
}
/*
* Set up SLRU management of the pg_notify data.
*/
NotifyCtl->PagePrecedes = asyncQueuePagePrecedes;
SimpleLruInit(NotifyCtl, "Notify", NUM_NOTIFY_BUFFERS, 0,
NotifySLRULock, "pg_notify", LWTRANCHE_NOTIFY_BUFFER,
SYNC_HANDLER_NONE);
if (!found)
{
/*
* During start or reboot, clean out the pg_notify directory.
*/
(void) SlruScanDirectory(NotifyCtl, SlruScanDirCbDeleteAll, NULL);
}
}
/*
* pg_notify -
* SQL function to send a notification event
*/
Datum
pg_notify(PG_FUNCTION_ARGS)
{
const char *channel;
const char *payload;
if (PG_ARGISNULL(0))
channel = "";
else
channel = text_to_cstring(PG_GETARG_TEXT_PP(0));
if (PG_ARGISNULL(1))
payload = "";
else
payload = text_to_cstring(PG_GETARG_TEXT_PP(1));
/* For NOTIFY as a statement, this is checked in ProcessUtility */
PreventCommandDuringRecovery("NOTIFY");
Async_Notify(channel, payload);
PG_RETURN_VOID();
}
/*
* Async_Notify
*
* This is executed by the SQL notify command.
*
* Adds the message to the list of pending notifies.
* Actual notification happens during transaction commit.
* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*/
void
Async_Notify(const char *channel, const char *payload)
{
int my_level = GetCurrentTransactionNestLevel();
size_t channel_len;
size_t payload_len;
Notification *n;
MemoryContext oldcontext;
if (IsParallelWorker())
elog(ERROR, "cannot send notifications from a parallel worker");
if (Trace_notify)
elog(DEBUG1, "Async_Notify(%s)", channel);
channel_len = channel ? strlen(channel) : 0;
payload_len = payload ? strlen(payload) : 0;
/* a channel name must be specified */
if (channel_len == 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("channel name cannot be empty")));
/* enforce length limits */
if (channel_len >= NAMEDATALEN)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("channel name too long")));
if (payload_len >= NOTIFY_PAYLOAD_MAX_LENGTH)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("payload string too long")));
/*
* We must construct the Notification entry, even if we end up not using
* it, in order to compare it cheaply to existing list entries.
*
* The notification list needs to live until end of transaction, so store
* it in the transaction context.
*/
oldcontext = MemoryContextSwitchTo(CurTransactionContext);
n = (Notification *) palloc(offsetof(Notification, data) +
channel_len + payload_len + 2);
n->channel_len = channel_len;
n->payload_len = payload_len;
strcpy(n->data, channel);
if (payload)
strcpy(n->data + channel_len + 1, payload);
else
n->data[channel_len + 1] = '\0';
if (pendingNotifies == NULL || my_level > pendingNotifies->nestingLevel)
{
NotificationList *notifies;
/*
* First notify event in current (sub)xact. Note that we allocate the
* NotificationList in TopTransactionContext; the nestingLevel might
* get changed later by AtSubCommit_Notify.
*/
notifies = (NotificationList *)
MemoryContextAlloc(TopTransactionContext,
sizeof(NotificationList));
notifies->nestingLevel = my_level;
notifies->events = list_make1(n);
/* We certainly don't need a hashtable yet */
notifies->hashtab = NULL;
notifies->upper = pendingNotifies;
pendingNotifies = notifies;
}
else
{
/* Now check for duplicates */
if (AsyncExistsPendingNotify(n))
{
/* It's a dup, so forget it */
pfree(n);
MemoryContextSwitchTo(oldcontext);
return;
}
/* Append more events to existing list */
AddEventToPendingNotifies(n);
}
MemoryContextSwitchTo(oldcontext);
}
/*
* queue_listen
* Common code for listen, unlisten, unlisten all commands.
*
* Adds the request to the list of pending actions.
* Actual update of the listenChannels list happens during transaction
* commit.
*/
static void
queue_listen(ListenActionKind action, const char *channel)
{
MemoryContext oldcontext;
ListenAction *actrec;
int my_level = GetCurrentTransactionNestLevel();
/*
* Unlike Async_Notify, we don't try to collapse out duplicates. It would
* be too complicated to ensure we get the right interactions of
* conflicting LISTEN/UNLISTEN/UNLISTEN_ALL, and it's unlikely that there
* would be any performance benefit anyway in sane applications.
*/
oldcontext = MemoryContextSwitchTo(CurTransactionContext);
/* space for terminating null is included in sizeof(ListenAction) */
actrec = (ListenAction *) palloc(offsetof(ListenAction, channel) +
strlen(channel) + 1);
actrec->action = action;
strcpy(actrec->channel, channel);
if (pendingActions == NULL || my_level > pendingActions->nestingLevel)
{
ActionList *actions;
/*
* First action in current sub(xact). Note that we allocate the
* ActionList in TopTransactionContext; the nestingLevel might get
* changed later by AtSubCommit_Notify.
*/
actions = (ActionList *)
MemoryContextAlloc(TopTransactionContext, sizeof(ActionList));
actions->nestingLevel = my_level;
actions->actions = list_make1(actrec);
actions->upper = pendingActions;
pendingActions = actions;
}
else
pendingActions->actions = lappend(pendingActions->actions, actrec);
MemoryContextSwitchTo(oldcontext);
}
/*
* Async_Listen
*
* This is executed by the SQL listen command.
*/
void
Async_Listen(const char *channel)
{
if (Trace_notify)
elog(DEBUG1, "Async_Listen(%s,%d)", channel, MyProcPid);
queue_listen(LISTEN_LISTEN, channel);
}
/*
* Async_Unlisten
*
* This is executed by the SQL unlisten command.
*/
void
Async_Unlisten(const char *channel)
{
if (Trace_notify)
elog(DEBUG1, "Async_Unlisten(%s,%d)", channel, MyProcPid);
/* If we couldn't possibly be listening, no need to queue anything */
if (pendingActions == NULL && !unlistenExitRegistered)
return;
queue_listen(LISTEN_UNLISTEN, channel);
}
/*
* Async_UnlistenAll
*
* This is invoked by UNLISTEN * command, and also at backend exit.
*/
void
Async_UnlistenAll(void)
{
if (Trace_notify)
elog(DEBUG1, "Async_UnlistenAll(%d)", MyProcPid);
/* If we couldn't possibly be listening, no need to queue anything */
if (pendingActions == NULL && !unlistenExitRegistered)
return;
queue_listen(LISTEN_UNLISTEN_ALL, "");
}
/*
* SQL function: return a set of the channel names this backend is actively
* listening to.
*
* Note: this coding relies on the fact that the listenChannels list cannot
* change within a transaction.
*/
Datum
pg_listening_channels(PG_FUNCTION_ARGS)
{
FuncCallContext *funcctx;
/* stuff done only on the first call of the function */
if (SRF_IS_FIRSTCALL())
{
/* create a function context for cross-call persistence */
funcctx = SRF_FIRSTCALL_INIT();
}
/* stuff done on every call of the function */
funcctx = SRF_PERCALL_SETUP();
if (funcctx->call_cntr < list_length(listenChannels))
{
char *channel = (char *) list_nth(listenChannels,
funcctx->call_cntr);
SRF_RETURN_NEXT(funcctx, CStringGetTextDatum(channel));
}
SRF_RETURN_DONE(funcctx);
}
/*
* Async_UnlistenOnExit
*
* This is executed at backend exit if we have done any LISTENs in this
* backend. It might not be necessary anymore, if the user UNLISTENed
* everything, but we don't try to detect that case.
*/
static void
Async_UnlistenOnExit(int code, Datum arg)
{
Exec_UnlistenAllCommit();
asyncQueueUnregister();
}
/*
* AtPrepare_Notify
*
* This is called at the prepare phase of a two-phase
* transaction. Save the state for possible commit later.
*/
void
AtPrepare_Notify(void)
{
/* It's not allowed to have any pending LISTEN/UNLISTEN/NOTIFY actions */
if (pendingActions || pendingNotifies)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot PREPARE a transaction that has executed LISTEN, UNLISTEN, or NOTIFY")));
}
/*
* PreCommit_Notify
*
* This is called at transaction commit, before actually committing to
* clog.
*
* If there are pending LISTEN actions, make sure we are listed in the
* shared-memory listener array. This must happen before commit to
* ensure we don't miss any notifies from transactions that commit
* just after ours.
*
* If there are outbound notify requests in the pendingNotifies list,
* add them to the global queue. We do that before commit so that
* we can still throw error if we run out of queue space.
*/
void
PreCommit_Notify(void)
{
ListCell *p;
if (!pendingActions && !pendingNotifies)
return; /* no relevant statements in this xact */
if (Trace_notify)
elog(DEBUG1, "PreCommit_Notify");
/* Preflight for any pending listen/unlisten actions */
if (pendingActions != NULL)
{
foreach(p, pendingActions->actions)
{
ListenAction *actrec = (ListenAction *) lfirst(p);
switch (actrec->action)
{
case LISTEN_LISTEN:
Exec_ListenPreCommit();
break;
case LISTEN_UNLISTEN:
/* there is no Exec_UnlistenPreCommit() */
break;
case LISTEN_UNLISTEN_ALL:
/* there is no Exec_UnlistenAllPreCommit() */
break;
}
}
}
/* Queue any pending notifies (must happen after the above) */
if (pendingNotifies)
{
ListCell *nextNotify;
/*
* Make sure that we have an XID assigned to the current transaction.
* GetCurrentTransactionId is cheap if we already have an XID, but not
* so cheap if we don't, and we'd prefer not to do that work while
* holding NotifyQueueLock.
*/
(void) GetCurrentTransactionId();
/*
* Serialize writers by acquiring a special lock that we hold till
* after commit. This ensures that queue entries appear in commit
* order, and in particular that there are never uncommitted queue
* entries ahead of committed ones, so an uncommitted transaction
* can't block delivery of deliverable notifications.
*
* We use a heavyweight lock so that it'll automatically be released
* after either commit or abort. This also allows deadlocks to be
* detected, though really a deadlock shouldn't be possible here.
*
* The lock is on "database 0", which is pretty ugly but it doesn't
* seem worth inventing a special locktag category just for this.
* (Historical note: before PG 9.0, a similar lock on "database 0" was
* used by the flatfiles mechanism.)
*/
LockSharedObject(DatabaseRelationId, InvalidOid, 0,
AccessExclusiveLock);
/* Now push the notifications into the queue */
nextNotify = list_head(pendingNotifies->events);
while (nextNotify != NULL)
{
/*
* Add the pending notifications to the queue. We acquire and
* release NotifyQueueLock once per page, which might be overkill
* but it does allow readers to get in while we're doing this.
*
* A full queue is very uncommon and should really not happen,
* given that we have so much space available in the SLRU pages.
* Nevertheless we need to deal with this possibility. Note that
* when we get here we are in the process of committing our
* transaction, but we have not yet committed to clog, so at this
* point in time we can still roll the transaction back.
*/
LWLockAcquire(NotifyQueueLock, LW_EXCLUSIVE);
asyncQueueFillWarning();
if (asyncQueueIsFull())
ereport(ERROR,
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
errmsg("too many notifications in the NOTIFY queue")));
nextNotify = asyncQueueAddEntries(nextNotify);
LWLockRelease(NotifyQueueLock);
}
/* Note that we don't clear pendingNotifies; AtCommit_Notify will. */
}
}
/*
* AtCommit_Notify
*
* This is called at transaction commit, after committing to clog.
*
* Update listenChannels and clear transaction-local state.
*
* If we issued any notifications in the transaction, send signals to
* listening backends (possibly including ourselves) to process them.
* Also, if we filled enough queue pages with new notifies, try to
* advance the queue tail pointer.
*/
void
AtCommit_Notify(void)
{
ListCell *p;
/*
* Allow transactions that have not executed LISTEN/UNLISTEN/NOTIFY to
* return as soon as possible
*/
if (!pendingActions && !pendingNotifies)
return;
if (Trace_notify)
elog(DEBUG1, "AtCommit_Notify");
/* Perform any pending listen/unlisten actions */
if (pendingActions != NULL)
{
foreach(p, pendingActions->actions)
{
ListenAction *actrec = (ListenAction *) lfirst(p);
switch (actrec->action)
{
case LISTEN_LISTEN:
Exec_ListenCommit(actrec->channel);
break;
case LISTEN_UNLISTEN:
Exec_UnlistenCommit(actrec->channel);
break;
case LISTEN_UNLISTEN_ALL:
Exec_UnlistenAllCommit();
break;
}
}
}
/* If no longer listening to anything, get out of listener array */
if (amRegisteredListener && listenChannels == NIL)
asyncQueueUnregister();
/*
* Send signals to listening backends. We need do this only if there are
* pending notifies, which were previously added to the shared queue by
* PreCommit_Notify().
*/
if (pendingNotifies != NULL)
SignalBackends();
/*
* If it's time to try to advance the global tail pointer, do that.
*
* (It might seem odd to do this in the sender, when more than likely the
* listeners won't yet have read the messages we just sent. However,
* there's less contention if only the sender does it, and there is little
* need for urgency in advancing the global tail. So this typically will
* be clearing out messages that were sent some time ago.)
*/
if (tryAdvanceTail)
{
tryAdvanceTail = false;
asyncQueueAdvanceTail();
}
/* And clean up */
ClearPendingActionsAndNotifies();
}
/*
* Exec_ListenPreCommit --- subroutine for PreCommit_Notify
*
* This function must make sure we are ready to catch any incoming messages.
*/
static void
Exec_ListenPreCommit(void)
{
QueuePosition head;
QueuePosition max;
BackendId prevListener;
/*
* Nothing to do if we are already listening to something, nor if we
* already ran this routine in this transaction.
*/
if (amRegisteredListener)
return;
if (Trace_notify)
elog(DEBUG1, "Exec_ListenPreCommit(%d)", MyProcPid);
/*
* Before registering, make sure we will unlisten before dying. (Note:
* this action does not get undone if we abort later.)
*/
if (!unlistenExitRegistered)
{
before_shmem_exit(Async_UnlistenOnExit, 0);
unlistenExitRegistered = true;
}
/*
* This is our first LISTEN, so establish our pointer.
*
* We set our pointer to the global tail pointer and then move it forward
* over already-committed notifications. This ensures we cannot miss any
* not-yet-committed notifications. We might get a few more but that
* doesn't hurt.
*
* In some scenarios there might be a lot of committed notifications that
* have not yet been pruned away (because some backend is being lazy about
* reading them). To reduce our startup time, we can look at other
* backends and adopt the maximum "pos" pointer of any backend that's in
* our database; any notifications it's already advanced over are surely
* committed and need not be re-examined by us. (We must consider only
* backends connected to our DB, because others will not have bothered to
* check committed-ness of notifications in our DB.)
*
* We need exclusive lock here so we can look at other backends' entries
* and manipulate the list links.
*/
LWLockAcquire(NotifyQueueLock, LW_EXCLUSIVE);
head = QUEUE_HEAD;
max = QUEUE_TAIL;
prevListener = InvalidBackendId;
for (BackendId i = QUEUE_FIRST_LISTENER; i > 0; i = QUEUE_NEXT_LISTENER(i))
{
if (QUEUE_BACKEND_DBOID(i) == MyDatabaseId)
max = QUEUE_POS_MAX(max, QUEUE_BACKEND_POS(i));
/* Also find last listening backend before this one */
if (i < MyBackendId)
prevListener = i;
}
QUEUE_BACKEND_POS(MyBackendId) = max;
QUEUE_BACKEND_PID(MyBackendId) = MyProcPid;
QUEUE_BACKEND_DBOID(MyBackendId) = MyDatabaseId;
/* Insert backend into list of listeners at correct position */
if (prevListener > 0)
{
QUEUE_NEXT_LISTENER(MyBackendId) = QUEUE_NEXT_LISTENER(prevListener);
QUEUE_NEXT_LISTENER(prevListener) = MyBackendId;
}
else
{
QUEUE_NEXT_LISTENER(MyBackendId) = QUEUE_FIRST_LISTENER;
QUEUE_FIRST_LISTENER = MyBackendId;
}
LWLockRelease(NotifyQueueLock);
/* Now we are listed in the global array, so remember we're listening */
amRegisteredListener = true;
/*
* Try to move our pointer forward as far as possible. This will skip
* over already-committed notifications, which we want to do because they
* might be quite stale. Note that we are not yet listening on anything,
* so we won't deliver such notifications to our frontend. Also, although
* our transaction might have executed NOTIFY, those message(s) aren't
* queued yet so we won't skip them here.
*/
if (!QUEUE_POS_EQUAL(max, head))
asyncQueueReadAllNotifications();
}
/*
* Exec_ListenCommit --- subroutine for AtCommit_Notify
*
* Add the channel to the list of channels we are listening on.
*/
static void
Exec_ListenCommit(const char *channel)
{
MemoryContext oldcontext;
/* Do nothing if we are already listening on this channel */
if (IsListeningOn(channel))
return;
/*
* Add the new channel name to listenChannels.
*
* XXX It is theoretically possible to get an out-of-memory failure here,
* which would be bad because we already committed. For the moment it
* doesn't seem worth trying to guard against that, but maybe improve this
* later.
*/
oldcontext = MemoryContextSwitchTo(TopMemoryContext);
listenChannels = lappend(listenChannels, pstrdup(channel));
MemoryContextSwitchTo(oldcontext);
}
/*
* Exec_UnlistenCommit --- subroutine for AtCommit_Notify
*
* Remove the specified channel name from listenChannels.
*/
static void
Exec_UnlistenCommit(const char *channel)
{
ListCell *q;
if (Trace_notify)
elog(DEBUG1, "Exec_UnlistenCommit(%s,%d)", channel, MyProcPid);
foreach(q, listenChannels)
{
char *lchan = (char *) lfirst(q);
if (strcmp(lchan, channel) == 0)
{
listenChannels = foreach_delete_current(listenChannels, q);
pfree(lchan);
break;
}
}
/*
* We do not complain about unlistening something not being listened;
* should we?
*/
}
/*
* Exec_UnlistenAllCommit --- subroutine for AtCommit_Notify
*
* Unlisten on all channels for this backend.
*/
static void
Exec_UnlistenAllCommit(void)
{
if (Trace_notify)
elog(DEBUG1, "Exec_UnlistenAllCommit(%d)", MyProcPid);
list_free_deep(listenChannels);
listenChannels = NIL;
}
/*
* Test whether we are actively listening on the given channel name.
*
* Note: this function is executed for every notification found in the queue.
* Perhaps it is worth further optimization, eg convert the list to a sorted
* array so we can binary-search it. In practice the list is likely to be
* fairly short, though.
*/
static bool
IsListeningOn(const char *channel)
{
ListCell *p;
foreach(p, listenChannels)
{
char *lchan = (char *) lfirst(p);
if (strcmp(lchan, channel) == 0)
return true;
}
return false;
}
/*
* Remove our entry from the listeners array when we are no longer listening
* on any channel. NB: must not fail if we're already not listening.
*/
static void
asyncQueueUnregister(void)
{
Assert(listenChannels == NIL); /* else caller error */
if (!amRegisteredListener) /* nothing to do */
return;
/*
* Need exclusive lock here to manipulate list links.
*/
LWLockAcquire(NotifyQueueLock, LW_EXCLUSIVE);
/* Mark our entry as invalid */
QUEUE_BACKEND_PID(MyBackendId) = InvalidPid;
QUEUE_BACKEND_DBOID(MyBackendId) = InvalidOid;
/* and remove it from the list */
if (QUEUE_FIRST_LISTENER == MyBackendId)
QUEUE_FIRST_LISTENER = QUEUE_NEXT_LISTENER(MyBackendId);
else
{
for (BackendId i = QUEUE_FIRST_LISTENER; i > 0; i = QUEUE_NEXT_LISTENER(i))
{
if (QUEUE_NEXT_LISTENER(i) == MyBackendId)
{
QUEUE_NEXT_LISTENER(i) = QUEUE_NEXT_LISTENER(MyBackendId);
break;
}
}
}
QUEUE_NEXT_LISTENER(MyBackendId) = InvalidBackendId;
LWLockRelease(NotifyQueueLock);
/* mark ourselves as no longer listed in the global array */
amRegisteredListener = false;
}
/*
* Test whether there is room to insert more notification messages.
*
* Caller must hold at least shared NotifyQueueLock.
*/
static bool
asyncQueueIsFull(void)
{
int nexthead;
int boundary;
/*
* The queue is full if creating a new head page would create a page that
* logically precedes the current global tail pointer, ie, the head
* pointer would wrap around compared to the tail. We cannot create such
* a head page for fear of confusing slru.c. For safety we round the tail
* pointer back to a segment boundary (truncation logic in
* asyncQueueAdvanceTail does not do this, so doing it here is optional).
*
* Note that this test is *not* dependent on how much space there is on
* the current head page. This is necessary because asyncQueueAddEntries
* might try to create the next head page in any case.
*/
nexthead = QUEUE_POS_PAGE(QUEUE_HEAD) + 1;
if (nexthead > QUEUE_MAX_PAGE)
nexthead = 0; /* wrap around */
boundary = QUEUE_STOP_PAGE;
boundary -= boundary % SLRU_PAGES_PER_SEGMENT;
return asyncQueuePagePrecedes(nexthead, boundary);
}
/*
* Advance the QueuePosition to the next entry, assuming that the current
* entry is of length entryLength. If we jump to a new page the function
* returns true, else false.
*/
static bool
asyncQueueAdvance(volatile QueuePosition *position, int entryLength)
{
int pageno = QUEUE_POS_PAGE(*position);
int offset = QUEUE_POS_OFFSET(*position);
bool pageJump = false;
/*
* Move to the next writing position: First jump over what we have just
* written or read.
*/
offset += entryLength;
Assert(offset <= QUEUE_PAGESIZE);
/*
* In a second step check if another entry can possibly be written to the
* page. If so, stay here, we have reached the next position. If not, then
* we need to move on to the next page.
*/
if (offset + QUEUEALIGN(AsyncQueueEntryEmptySize) > QUEUE_PAGESIZE)
{
pageno++;
if (pageno > QUEUE_MAX_PAGE)
pageno = 0; /* wrap around */
offset = 0;
pageJump = true;
}
SET_QUEUE_POS(*position, pageno, offset);
return pageJump;
}
/*
* Fill the AsyncQueueEntry at *qe with an outbound notification message.
*/
static void
asyncQueueNotificationToEntry(Notification *n, AsyncQueueEntry *qe)
{
size_t channellen = n->channel_len;
size_t payloadlen = n->payload_len;
int entryLength;
Assert(channellen < NAMEDATALEN);
Assert(payloadlen < NOTIFY_PAYLOAD_MAX_LENGTH);
/* The terminators are already included in AsyncQueueEntryEmptySize */
entryLength = AsyncQueueEntryEmptySize + payloadlen + channellen;
entryLength = QUEUEALIGN(entryLength);
qe->length = entryLength;
qe->dboid = MyDatabaseId;
qe->xid = GetCurrentTransactionId();
qe->srcPid = MyProcPid;
memcpy(qe->data, n->data, channellen + payloadlen + 2);
}
/*
* Add pending notifications to the queue.
*
* We go page by page here, i.e. we stop once we have to go to a new page but
* we will be called again and then fill that next page. If an entry does not
* fit into the current page, we write a dummy entry with an InvalidOid as the
* database OID in order to fill the page. So every page is always used up to
* the last byte which simplifies reading the page later.
*
* We are passed the list cell (in pendingNotifies->events) containing the next
* notification to write and return the first still-unwritten cell back.
* Eventually we will return NULL indicating all is done.
*
* We are holding NotifyQueueLock already from the caller and grab
* NotifySLRULock locally in this function.
*/
static ListCell *
asyncQueueAddEntries(ListCell *nextNotify)
{
AsyncQueueEntry qe;
QueuePosition queue_head;
int pageno;
int offset;
int slotno;
/* We hold both NotifyQueueLock and NotifySLRULock during this operation */
LWLockAcquire(NotifySLRULock, LW_EXCLUSIVE);
/*
* We work with a local copy of QUEUE_HEAD, which we write back to shared
* memory upon exiting. The reason for this is that if we have to advance
* to a new page, SimpleLruZeroPage might fail (out of disk space, for
* instance), and we must not advance QUEUE_HEAD if it does. (Otherwise,
* subsequent insertions would try to put entries into a page that slru.c
* thinks doesn't exist yet.) So, use a local position variable. Note
* that if we do fail, any already-inserted queue entries are forgotten;
* this is okay, since they'd be useless anyway after our transaction
* rolls back.
*/
queue_head = QUEUE_HEAD;
/*
* If this is the first write since the postmaster started, we need to
* initialize the first page of the async SLRU. Otherwise, the current
* page should be initialized already, so just fetch it.
*
* (We could also take the first path when the SLRU position has just
* wrapped around, but re-zeroing the page is harmless in that case.)
*/
pageno = QUEUE_POS_PAGE(queue_head);
if (QUEUE_POS_IS_ZERO(queue_head))
slotno = SimpleLruZeroPage(NotifyCtl, pageno);
else
slotno = SimpleLruReadPage(NotifyCtl, pageno, true,
InvalidTransactionId);
/* Note we mark the page dirty before writing in it */
NotifyCtl->shared->page_dirty[slotno] = true;
while (nextNotify != NULL)
{
Notification *n = (Notification *) lfirst(nextNotify);
/* Construct a valid queue entry in local variable qe */
asyncQueueNotificationToEntry(n, &qe);
offset = QUEUE_POS_OFFSET(queue_head);
/* Check whether the entry really fits on the current page */
if (offset + qe.length <= QUEUE_PAGESIZE)
{
/* OK, so advance nextNotify past this item */
nextNotify = lnext(pendingNotifies->events, nextNotify);
}
else
{
/*
* Write a dummy entry to fill up the page. Actually readers will
* only check dboid and since it won't match any reader's database
* OID, they will ignore this entry and move on.
*/
qe.length = QUEUE_PAGESIZE - offset;
qe.dboid = InvalidOid;
qe.data[0] = '\0'; /* empty channel */
qe.data[1] = '\0'; /* empty payload */
}
/* Now copy qe into the shared buffer page */
memcpy(NotifyCtl->shared->page_buffer[slotno] + offset,
&qe,
qe.length);
/* Advance queue_head appropriately, and detect if page is full */
if (asyncQueueAdvance(&(queue_head), qe.length))
{
/*
* Page is full, so we're done here, but first fill the next page
* with zeroes. The reason to do this is to ensure that slru.c's
* idea of the head page is always the same as ours, which avoids
* boundary problems in SimpleLruTruncate. The test in
* asyncQueueIsFull() ensured that there is room to create this
* page without overrunning the queue.
*/
slotno = SimpleLruZeroPage(NotifyCtl, QUEUE_POS_PAGE(queue_head));
/*
* If the new page address is a multiple of QUEUE_CLEANUP_DELAY,
* set flag to remember that we should try to advance the tail
* pointer (we don't want to actually do that right here).
*/
if (QUEUE_POS_PAGE(queue_head) % QUEUE_CLEANUP_DELAY == 0)
tryAdvanceTail = true;
/* And exit the loop */
break;
}
}
/* Success, so update the global QUEUE_HEAD */
QUEUE_HEAD = queue_head;
LWLockRelease(NotifySLRULock);
return nextNotify;
}
/*
* SQL function to return the fraction of the notification queue currently
* occupied.
*/
Datum
pg_notification_queue_usage(PG_FUNCTION_ARGS)
{
double usage;
/* Advance the queue tail so we don't report a too-large result */
asyncQueueAdvanceTail();
LWLockAcquire(NotifyQueueLock, LW_SHARED);
usage = asyncQueueUsage();
LWLockRelease(NotifyQueueLock);
PG_RETURN_FLOAT8(usage);
}
/*
* Return the fraction of the queue that is currently occupied.
*
* The caller must hold NotifyQueueLock in (at least) shared mode.
*
* Note: we measure the distance to the logical tail page, not the physical
* tail page. In some sense that's wrong, but the relative position of the
* physical tail is affected by details such as SLRU segment boundaries,
* so that a result based on that is unpleasantly unstable.
*/
static double
asyncQueueUsage(void)
{
int headPage = QUEUE_POS_PAGE(QUEUE_HEAD);
int tailPage = QUEUE_POS_PAGE(QUEUE_TAIL);
int occupied;
occupied = headPage - tailPage;
if (occupied == 0)
return (double) 0; /* fast exit for common case */
if (occupied < 0)
{
/* head has wrapped around, tail not yet */
occupied += QUEUE_MAX_PAGE + 1;
}
return (double) occupied / (double) ((QUEUE_MAX_PAGE + 1) / 2);
}
/*
* Check whether the queue is at least half full, and emit a warning if so.
*
* This is unlikely given the size of the queue, but possible.
* The warnings show up at most once every QUEUE_FULL_WARN_INTERVAL.
*
* Caller must hold exclusive NotifyQueueLock.
*/
static void
asyncQueueFillWarning(void)
{
double fillDegree;
TimestampTz t;
fillDegree = asyncQueueUsage();
if (fillDegree < 0.5)
return;
t = GetCurrentTimestamp();
if (TimestampDifferenceExceeds(asyncQueueControl->lastQueueFillWarn,
t, QUEUE_FULL_WARN_INTERVAL))
{
QueuePosition min = QUEUE_HEAD;
int32 minPid = InvalidPid;
for (BackendId i = QUEUE_FIRST_LISTENER; i > 0; i = QUEUE_NEXT_LISTENER(i))
{
Assert(QUEUE_BACKEND_PID(i) != InvalidPid);
min = QUEUE_POS_MIN(min, QUEUE_BACKEND_POS(i));
if (QUEUE_POS_EQUAL(min, QUEUE_BACKEND_POS(i)))
minPid = QUEUE_BACKEND_PID(i);
}
ereport(WARNING,
(errmsg("NOTIFY queue is %.0f%% full", fillDegree * 100),
(minPid != InvalidPid ?
errdetail("The server process with PID %d is among those with the oldest transactions.", minPid)
: 0),
(minPid != InvalidPid ?
errhint("The NOTIFY queue cannot be emptied until that process ends its current transaction.")
: 0)));
asyncQueueControl->lastQueueFillWarn = t;
}
}
/*
* Send signals to listening backends.
*
* Normally we signal only backends in our own database, since only those
* backends could be interested in notifies we send. However, if there's
* notify traffic in our database but no traffic in another database that
* does have listener(s), those listeners will fall further and further
* behind. Waken them anyway if they're far enough behind, so that they'll
* advance their queue position pointers, allowing the global tail to advance.
*
* Since we know the BackendId and the Pid the signaling is quite cheap.
*
* This is called during CommitTransaction(), so it's important for it
* to have very low probability of failure.
*/
static void
SignalBackends(void)
{
int32 *pids;
BackendId *ids;
int count;
/*
* Identify backends that we need to signal. We don't want to send
* signals while holding the NotifyQueueLock, so this loop just builds a
* list of target PIDs.
*
* XXX in principle these pallocs could fail, which would be bad. Maybe
* preallocate the arrays? They're not that large, though.
*/
pids = (int32 *) palloc(MaxBackends * sizeof(int32));
ids = (BackendId *) palloc(MaxBackends * sizeof(BackendId));
count = 0;
LWLockAcquire(NotifyQueueLock, LW_EXCLUSIVE);
for (BackendId i = QUEUE_FIRST_LISTENER; i > 0; i = QUEUE_NEXT_LISTENER(i))
{
int32 pid = QUEUE_BACKEND_PID(i);
QueuePosition pos;
Assert(pid != InvalidPid);
pos = QUEUE_BACKEND_POS(i);
if (QUEUE_BACKEND_DBOID(i) == MyDatabaseId)
{
/*
* Always signal listeners in our own database, unless they're
* already caught up (unlikely, but possible).
*/
if (QUEUE_POS_EQUAL(pos, QUEUE_HEAD))
continue;
}
else
{
/*
* Listeners in other databases should be signaled only if they
* are far behind.
*/
if (asyncQueuePageDiff(QUEUE_POS_PAGE(QUEUE_HEAD),
QUEUE_POS_PAGE(pos)) < QUEUE_CLEANUP_DELAY)
continue;
}
/* OK, need to signal this one */
pids[count] = pid;
ids[count] = i;
count++;
}
LWLockRelease(NotifyQueueLock);
/* Now send signals */
for (int i = 0; i < count; i++)
{
int32 pid = pids[i];
/*
* If we are signaling our own process, no need to involve the kernel;
* just set the flag directly.
*/
if (pid == MyProcPid)
{
notifyInterruptPending = true;
continue;
}
/*
* Note: assuming things aren't broken, a signal failure here could
* only occur if the target backend exited since we released
* NotifyQueueLock; which is unlikely but certainly possible. So we
* just log a low-level debug message if it happens.
*/
if (SendProcSignal(pid, PROCSIG_NOTIFY_INTERRUPT, ids[i]) < 0)
elog(DEBUG3, "could not signal backend with PID %d: %m", pid);
}
pfree(pids);
pfree(ids);
}
/*
* AtAbort_Notify
*
* This is called at transaction abort.
*
* Gets rid of pending actions and outbound notifies that we would have
* executed if the transaction got committed.
*/
void
AtAbort_Notify(void)
{
/*
* If we LISTEN but then roll back the transaction after PreCommit_Notify,
* we have registered as a listener but have not made any entry in
* listenChannels. In that case, deregister again.
*/
if (amRegisteredListener && listenChannels == NIL)
asyncQueueUnregister();
/* And clean up */
ClearPendingActionsAndNotifies();
}
/*
* AtSubCommit_Notify() --- Take care of subtransaction commit.
*
* Reassign all items in the pending lists to the parent transaction.
*/
void
AtSubCommit_Notify(void)
{
int my_level = GetCurrentTransactionNestLevel();
/* If there are actions at our nesting level, we must reparent them. */
if (pendingActions != NULL &&
pendingActions->nestingLevel >= my_level)
{
if (pendingActions->upper == NULL ||
pendingActions->upper->nestingLevel < my_level - 1)
{
/* nothing to merge; give the whole thing to the parent */
--pendingActions->nestingLevel;
}
else
{
ActionList *childPendingActions = pendingActions;
pendingActions = pendingActions->upper;
/*
* Mustn't try to eliminate duplicates here --- see queue_listen()
*/
pendingActions->actions =
list_concat(pendingActions->actions,
childPendingActions->actions);
pfree(childPendingActions);
}
}
/* If there are notifies at our nesting level, we must reparent them. */
if (pendingNotifies != NULL &&
pendingNotifies->nestingLevel >= my_level)
{
Assert(pendingNotifies->nestingLevel == my_level);
if (pendingNotifies->upper == NULL ||
pendingNotifies->upper->nestingLevel < my_level - 1)
{
/* nothing to merge; give the whole thing to the parent */
--pendingNotifies->nestingLevel;
}
else
{
/*
* Formerly, we didn't bother to eliminate duplicates here, but
* now we must, else we fall foul of "Assert(!found)", either here
* or during a later attempt to build the parent-level hashtable.
*/
NotificationList *childPendingNotifies = pendingNotifies;
ListCell *l;
pendingNotifies = pendingNotifies->upper;
/* Insert all the subxact's events into parent, except for dups */
foreach(l, childPendingNotifies->events)
{
Notification *childn = (Notification *) lfirst(l);
if (!AsyncExistsPendingNotify(childn))
AddEventToPendingNotifies(childn);
}
pfree(childPendingNotifies);
}
}
}
/*
* AtSubAbort_Notify() --- Take care of subtransaction abort.
*/
void
AtSubAbort_Notify(void)
{
int my_level = GetCurrentTransactionNestLevel();
/*
* All we have to do is pop the stack --- the actions/notifies made in
* this subxact are no longer interesting, and the space will be freed
* when CurTransactionContext is recycled. We still have to free the
* ActionList and NotificationList objects themselves, though, because
* those are allocated in TopTransactionContext.
*
* Note that there might be no entries at all, or no entries for the
* current subtransaction level, either because none were ever created, or
* because we reentered this routine due to trouble during subxact abort.
*/
while (pendingActions != NULL &&
pendingActions->nestingLevel >= my_level)
{
ActionList *childPendingActions = pendingActions;
pendingActions = pendingActions->upper;
pfree(childPendingActions);
}
while (pendingNotifies != NULL &&
pendingNotifies->nestingLevel >= my_level)
{
NotificationList *childPendingNotifies = pendingNotifies;
pendingNotifies = pendingNotifies->upper;
pfree(childPendingNotifies);
}
}
/*
* HandleNotifyInterrupt
*
* Signal handler portion of interrupt handling. Let the backend know
* that there's a pending notify interrupt. If we're currently reading
* from the client, this will interrupt the read and
* ProcessClientReadInterrupt() will call ProcessNotifyInterrupt().
*/
void
HandleNotifyInterrupt(void)
{
/*
* Note: this is called by a SIGNAL HANDLER. You must be very wary what
* you do here.
*/
/* signal that work needs to be done */
notifyInterruptPending = true;
/* make sure the event is processed in due course */
SetLatch(MyLatch);
}
/*
* ProcessNotifyInterrupt
*
* This is called if we see notifyInterruptPending set, just before
* transmitting ReadyForQuery at the end of a frontend command, and
* also if a notify signal occurs while reading from the frontend.
* HandleNotifyInterrupt() will cause the read to be interrupted
* via the process's latch, and this routine will get called.
* If we are truly idle (ie, *not* inside a transaction block),
* process the incoming notifies.
*
* If "flush" is true, force any frontend messages out immediately.
* This can be false when being called at the end of a frontend command,
* since we'll flush after sending ReadyForQuery.
*/
void
ProcessNotifyInterrupt(bool flush)
{
if (IsTransactionOrTransactionBlock())
return; /* not really idle */
/* Loop in case another signal arrives while sending messages */
while (notifyInterruptPending)
ProcessIncomingNotify(flush);
}
/*
* Read all pending notifications from the queue, and deliver appropriate
* ones to my frontend. Stop when we reach queue head or an uncommitted
* notification.
*/
static void
asyncQueueReadAllNotifications(void)
{
volatile QueuePosition pos;
QueuePosition head;
Snapshot snapshot;
/* page_buffer must be adequately aligned, so use a union */
union
{
char buf[QUEUE_PAGESIZE];
AsyncQueueEntry align;
} page_buffer;
/* Fetch current state */
LWLockAcquire(NotifyQueueLock, LW_SHARED);
/* Assert checks that we have a valid state entry */
Assert(MyProcPid == QUEUE_BACKEND_PID(MyBackendId));
pos = QUEUE_BACKEND_POS(MyBackendId);
head = QUEUE_HEAD;
LWLockRelease(NotifyQueueLock);
if (QUEUE_POS_EQUAL(pos, head))
{
/* Nothing to do, we have read all notifications already. */
return;
}
/*----------
* Get snapshot we'll use to decide which xacts are still in progress.
* This is trickier than it might seem, because of race conditions.
* Consider the following example:
*
* Backend 1: Backend 2:
*
* transaction starts
* UPDATE foo SET ...;
* NOTIFY foo;
* commit starts
* queue the notify message
* transaction starts
* LISTEN foo; -- first LISTEN in session
* SELECT * FROM foo WHERE ...;
* commit to clog
* commit starts
* add backend 2 to array of listeners
* advance to queue head (this code)
* commit to clog
*
* Transaction 2's SELECT has not seen the UPDATE's effects, since that
* wasn't committed yet. Ideally we'd ensure that client 2 would
* eventually get transaction 1's notify message, but there's no way
* to do that; until we're in the listener array, there's no guarantee
* that the notify message doesn't get removed from the queue.
*
* Therefore the coding technique transaction 2 is using is unsafe:
* applications must commit a LISTEN before inspecting database state,
* if they want to ensure they will see notifications about subsequent
* changes to that state.
*
* What we do guarantee is that we'll see all notifications from
* transactions committing after the snapshot we take here.
* Exec_ListenPreCommit has already added us to the listener array,
* so no not-yet-committed messages can be removed from the queue
* before we see them.
*----------
*/
snapshot = RegisterSnapshot(GetLatestSnapshot());
/*
* It is possible that we fail while trying to send a message to our
* frontend (for example, because of encoding conversion failure). If
* that happens it is critical that we not try to send the same message
* over and over again. Therefore, we place a PG_TRY block here that will
* forcibly advance our queue position before we lose control to an error.
* (We could alternatively retake NotifyQueueLock and move the position
* before handling each individual message, but that seems like too much
* lock traffic.)
*/
PG_TRY();
{
bool reachedStop;
do
{
int curpage = QUEUE_POS_PAGE(pos);
int curoffset = QUEUE_POS_OFFSET(pos);
int slotno;
int copysize;
/*
* We copy the data from SLRU into a local buffer, so as to avoid
* holding the NotifySLRULock while we are examining the entries
* and possibly transmitting them to our frontend. Copy only the
* part of the page we will actually inspect.
*/
slotno = SimpleLruReadPage_ReadOnly(NotifyCtl, curpage,
InvalidTransactionId);
if (curpage == QUEUE_POS_PAGE(head))
{
/* we only want to read as far as head */
copysize = QUEUE_POS_OFFSET(head) - curoffset;
if (copysize < 0)
copysize = 0; /* just for safety */
}
else
{
/* fetch all the rest of the page */
copysize = QUEUE_PAGESIZE - curoffset;
}
memcpy(page_buffer.buf + curoffset,
NotifyCtl->shared->page_buffer[slotno] + curoffset,
copysize);
/* Release lock that we got from SimpleLruReadPage_ReadOnly() */
LWLockRelease(NotifySLRULock);
/*
* Process messages up to the stop position, end of page, or an
* uncommitted message.
*
* Our stop position is what we found to be the head's position
* when we entered this function. It might have changed already.
* But if it has, we will receive (or have already received and
* queued) another signal and come here again.
*
* We are not holding NotifyQueueLock here! The queue can only
* extend beyond the head pointer (see above) and we leave our
* backend's pointer where it is so nobody will truncate or
* rewrite pages under us. Especially we don't want to hold a lock
* while sending the notifications to the frontend.
*/
reachedStop = asyncQueueProcessPageEntries(&pos, head,
page_buffer.buf,
snapshot);
} while (!reachedStop);
}
PG_FINALLY();
{
/* Update shared state */
LWLockAcquire(NotifyQueueLock, LW_SHARED);
QUEUE_BACKEND_POS(MyBackendId) = pos;
LWLockRelease(NotifyQueueLock);
}
PG_END_TRY();
/* Done with snapshot */
UnregisterSnapshot(snapshot);
}
/*
* Fetch notifications from the shared queue, beginning at position current,
* and deliver relevant ones to my frontend.
*
* The current page must have been fetched into page_buffer from shared
* memory. (We could access the page right in shared memory, but that
* would imply holding the NotifySLRULock throughout this routine.)
*
* We stop if we reach the "stop" position, or reach a notification from an
* uncommitted transaction, or reach the end of the page.
*
* The function returns true once we have reached the stop position or an
* uncommitted notification, and false if we have finished with the page.
* In other words: once it returns true there is no need to look further.
* The QueuePosition *current is advanced past all processed messages.
*/
static bool
asyncQueueProcessPageEntries(volatile QueuePosition *current,
QueuePosition stop,
char *page_buffer,
Snapshot snapshot)
{
bool reachedStop = false;
bool reachedEndOfPage;
AsyncQueueEntry *qe;
do
{
QueuePosition thisentry = *current;
if (QUEUE_POS_EQUAL(thisentry, stop))
break;
qe = (AsyncQueueEntry *) (page_buffer + QUEUE_POS_OFFSET(thisentry));
/*
* Advance *current over this message, possibly to the next page. As
* noted in the comments for asyncQueueReadAllNotifications, we must
* do this before possibly failing while processing the message.
*/
reachedEndOfPage = asyncQueueAdvance(current, qe->length);
/* Ignore messages destined for other databases */
if (qe->dboid == MyDatabaseId)
{
if (XidInMVCCSnapshot(qe->xid, snapshot))
{
/*
* The source transaction is still in progress, so we can't
* process this message yet. Break out of the loop, but first
* back up *current so we will reprocess the message next
* time. (Note: it is unlikely but not impossible for
* TransactionIdDidCommit to fail, so we can't really avoid
* this advance-then-back-up behavior when dealing with an
* uncommitted message.)
*
* Note that we must test XidInMVCCSnapshot before we test
* TransactionIdDidCommit, else we might return a message from
* a transaction that is not yet visible to snapshots; compare
* the comments at the head of heapam_visibility.c.
*
* Also, while our own xact won't be listed in the snapshot,
* we need not check for TransactionIdIsCurrentTransactionId
* because our transaction cannot (yet) have queued any
* messages.
*/
*current = thisentry;
reachedStop = true;
break;
}
else if (TransactionIdDidCommit(qe->xid))
{
/* qe->data is the null-terminated channel name */
char *channel = qe->data;
if (IsListeningOn(channel))
{
/* payload follows channel name */
char *payload = qe->data + strlen(channel) + 1;
NotifyMyFrontEnd(channel, payload, qe->srcPid);
}
}
else
{
/*
* The source transaction aborted or crashed, so we just
* ignore its notifications.
*/
}
}
/* Loop back if we're not at end of page */
} while (!reachedEndOfPage);
if (QUEUE_POS_EQUAL(*current, stop))
reachedStop = true;
return reachedStop;
}
/*
* Advance the shared queue tail variable to the minimum of all the
* per-backend tail pointers. Truncate pg_notify space if possible.
*
* This is (usually) called during CommitTransaction(), so it's important for
* it to have very low probability of failure.
*/
static void
asyncQueueAdvanceTail(void)
{
QueuePosition min;
int oldtailpage;
int newtailpage;
int boundary;
/* Restrict task to one backend per cluster; see SimpleLruTruncate(). */
LWLockAcquire(NotifyQueueTailLock, LW_EXCLUSIVE);
/*
* Compute the new tail. Pre-v13, it's essential that QUEUE_TAIL be exact
* (ie, exactly match at least one backend's queue position), so it must
* be updated atomically with the actual computation. Since v13, we could
* get away with not doing it like that, but it seems prudent to keep it
* so.
*
* Also, because incoming backends will scan forward from QUEUE_TAIL, that
* must be advanced before we can truncate any data. Thus, QUEUE_TAIL is
* the logical tail, while QUEUE_STOP_PAGE is the physical tail, or oldest
* un-truncated page. When QUEUE_STOP_PAGE != QUEUE_POS_PAGE(QUEUE_TAIL),
* there are pages we can truncate but haven't yet finished doing so.
*
* For concurrency's sake, we don't want to hold NotifyQueueLock while
* performing SimpleLruTruncate. This is OK because no backend will try
* to access the pages we are in the midst of truncating.
*/
LWLockAcquire(NotifyQueueLock, LW_EXCLUSIVE);
min = QUEUE_HEAD;
for (BackendId i = QUEUE_FIRST_LISTENER; i > 0; i = QUEUE_NEXT_LISTENER(i))
{
Assert(QUEUE_BACKEND_PID(i) != InvalidPid);
min = QUEUE_POS_MIN(min, QUEUE_BACKEND_POS(i));
}
QUEUE_TAIL = min;
oldtailpage = QUEUE_STOP_PAGE;
LWLockRelease(NotifyQueueLock);
/*
* We can truncate something if the global tail advanced across an SLRU
* segment boundary.
*
* XXX it might be better to truncate only once every several segments, to
* reduce the number of directory scans.
*/
newtailpage = QUEUE_POS_PAGE(min);
boundary = newtailpage - (newtailpage % SLRU_PAGES_PER_SEGMENT);
if (asyncQueuePagePrecedes(oldtailpage, boundary))
{
/*
* SimpleLruTruncate() will ask for NotifySLRULock but will also
* release the lock again.
*/
SimpleLruTruncate(NotifyCtl, newtailpage);
/*
* Update QUEUE_STOP_PAGE. This changes asyncQueueIsFull()'s verdict
* for the segment immediately prior to the old tail, allowing fresh
* data into that segment.
*/
LWLockAcquire(NotifyQueueLock, LW_EXCLUSIVE);
QUEUE_STOP_PAGE = newtailpage;
LWLockRelease(NotifyQueueLock);
}
LWLockRelease(NotifyQueueTailLock);
}
/*
* ProcessIncomingNotify
*
* Scan the queue for arriving notifications and report them to the front
* end. The notifications might be from other sessions, or our own;
* there's no need to distinguish here.
*
* If "flush" is true, force any frontend messages out immediately.
*
* NOTE: since we are outside any transaction, we must create our own.
*/
static void
ProcessIncomingNotify(bool flush)
{
/* We *must* reset the flag */
notifyInterruptPending = false;
/* Do nothing else if we aren't actively listening */
if (listenChannels == NIL)
return;
if (Trace_notify)
elog(DEBUG1, "ProcessIncomingNotify");
set_ps_display("notify interrupt");
/*
* We must run asyncQueueReadAllNotifications inside a transaction, else
* bad things happen if it gets an error.
*/
StartTransactionCommand();
asyncQueueReadAllNotifications();
CommitTransactionCommand();
/*
* If this isn't an end-of-command case, we must flush the notify messages
* to ensure frontend gets them promptly.
*/
if (flush)
pq_flush();
set_ps_display("idle");
if (Trace_notify)
elog(DEBUG1, "ProcessIncomingNotify: done");
}
/*
* Send NOTIFY message to my front end.
*/
void
NotifyMyFrontEnd(const char *channel, const char *payload, int32 srcPid)
{
if (whereToSendOutput == DestRemote)
{
StringInfoData buf;
pq_beginmessage(&buf, 'A');
pq_sendint32(&buf, srcPid);
pq_sendstring(&buf, channel);
pq_sendstring(&buf, payload);
pq_endmessage(&buf);
/*
* NOTE: we do not do pq_flush() here. Some level of caller will
* handle it later, allowing this message to be combined into a packet
* with other ones.
*/
}
else
elog(INFO, "NOTIFY for \"%s\" payload \"%s\"", channel, payload);
}
/* Does pendingNotifies include a match for the given event? */
static bool
AsyncExistsPendingNotify(Notification *n)
{
if (pendingNotifies == NULL)
return false;
if (pendingNotifies->hashtab != NULL)
{
/* Use the hash table to probe for a match */
if (hash_search(pendingNotifies->hashtab,
&n,
HASH_FIND,
NULL))
return true;
}
else
{
/* Must scan the event list */
ListCell *l;
foreach(l, pendingNotifies->events)
{
Notification *oldn = (Notification *) lfirst(l);
if (n->channel_len == oldn->channel_len &&
n->payload_len == oldn->payload_len &&
memcmp(n->data, oldn->data,
n->channel_len + n->payload_len + 2) == 0)
return true;
}
}
return false;
}
/*
* Add a notification event to a pre-existing pendingNotifies list.
*
* Because pendingNotifies->events is already nonempty, this works
* correctly no matter what CurrentMemoryContext is.
*/
static void
AddEventToPendingNotifies(Notification *n)
{
Assert(pendingNotifies->events != NIL);
/* Create the hash table if it's time to */
if (list_length(pendingNotifies->events) >= MIN_HASHABLE_NOTIFIES &&
pendingNotifies->hashtab == NULL)
{
HASHCTL hash_ctl;
ListCell *l;
/* Create the hash table */
hash_ctl.keysize = sizeof(Notification *);
hash_ctl.entrysize = sizeof(NotificationHash);
hash_ctl.hash = notification_hash;
hash_ctl.match = notification_match;
hash_ctl.hcxt = CurTransactionContext;
pendingNotifies->hashtab =
hash_create("Pending Notifies",
256L,
&hash_ctl,
HASH_ELEM | HASH_FUNCTION | HASH_COMPARE | HASH_CONTEXT);
/* Insert all the already-existing events */
foreach(l, pendingNotifies->events)
{
Notification *oldn = (Notification *) lfirst(l);
NotificationHash *hentry;
bool found;
hentry = (NotificationHash *) hash_search(pendingNotifies->hashtab,
&oldn,
HASH_ENTER,
&found);
Assert(!found);
hentry->event = oldn;
}
}
/* Add new event to the list, in order */
pendingNotifies->events = lappend(pendingNotifies->events, n);
/* Add event to the hash table if needed */
if (pendingNotifies->hashtab != NULL)
{
NotificationHash *hentry;
bool found;
hentry = (NotificationHash *) hash_search(pendingNotifies->hashtab,
&n,
HASH_ENTER,
&found);
Assert(!found);
hentry->event = n;
}
}
/*
* notification_hash: hash function for notification hash table
*
* The hash "keys" are pointers to Notification structs.
*/
static uint32
notification_hash(const void *key, Size keysize)
{
const Notification *k = *(const Notification *const *) key;
Assert(keysize == sizeof(Notification *));
/* We don't bother to include the payload's trailing null in the hash */
return DatumGetUInt32(hash_any((const unsigned char *) k->data,
k->channel_len + k->payload_len + 1));
}
/*
* notification_match: match function to use with notification_hash
*/
static int
notification_match(const void *key1, const void *key2, Size keysize)
{
const Notification *k1 = *(const Notification *const *) key1;
const Notification *k2 = *(const Notification *const *) key2;
Assert(keysize == sizeof(Notification *));
if (k1->channel_len == k2->channel_len &&
k1->payload_len == k2->payload_len &&
memcmp(k1->data, k2->data,
k1->channel_len + k1->payload_len + 2) == 0)
return 0; /* equal */
return 1; /* not equal */
}
/* Clear the pendingActions and pendingNotifies lists. */
static void
ClearPendingActionsAndNotifies(void)
{
/*
* Everything's allocated in either TopTransactionContext or the context
* for the subtransaction to which it corresponds. So, there's nothing to
* do here except reset the pointers; the space will be reclaimed when the
* contexts are deleted.
*/
pendingActions = NULL;
pendingNotifies = NULL;
}
|