1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
|
#pragma once
#include <yql/essentials/minikql/defs.h>
#include <yql/essentials/minikql/mkql_node.h>
#include <yql/essentials/public/udf/udf_value.h>
#include <yql/essentials/utils/swap_bytes.h>
#include <util/generic/vector.h>
namespace NKikimr {
namespace NMiniKQL {
namespace NDetail {
using NYql::SwapBytes;
Y_FORCE_INLINE
void EnsureInputSize(TStringBuf& input, size_t size) {
MKQL_ENSURE(input.size() >= size, "premature end of input");
}
template <bool Desc>
Y_FORCE_INLINE
void EncodeBool(TVector<ui8>& output, bool value) {
output.push_back(Desc ? 0xFF ^ ui8(value) : ui8(value));
}
template <bool Desc>
Y_FORCE_INLINE
bool DecodeBool(TStringBuf& input) {
EnsureInputSize(input, 1);
auto result = Desc ? bool(0xFF ^ ui8(input[0])) : bool(input[0]);
input.Skip(1);
return result;
}
template <typename TUnsigned, bool Desc>
Y_FORCE_INLINE
void EncodeUnsigned(TVector<ui8>& output, TUnsigned value) {
constexpr size_t size = sizeof(TUnsigned);
if (Desc) {
value = ~value;
}
output.resize(output.size() + size);
WriteUnaligned<TUnsigned>(output.end() - size, SwapBytes(value));
}
template <typename TUnsigned, bool Desc>
Y_FORCE_INLINE
TUnsigned DecodeUnsigned(TStringBuf& input) {
constexpr size_t size = sizeof(TUnsigned);
EnsureInputSize(input, size);
auto value = ReadUnaligned<TUnsigned>(input.data());
input.Skip(size);
value = SwapBytes(value);
if (Desc) {
value = ~value;
}
return value;
}
template <typename TSigned, bool Desc>
Y_FORCE_INLINE
void EncodeSigned(TVector<ui8>& output, TSigned value) {
using TUnsigned = std::make_unsigned_t<TSigned>;
constexpr size_t size = sizeof(TUnsigned);
constexpr TUnsigned shift = TUnsigned(1) << (size * 8 - 1);
EncodeUnsigned<TUnsigned, Desc>(output, TUnsigned(value) + shift);
}
template <typename TSigned, bool Desc>
Y_FORCE_INLINE
TSigned DecodeSigned(TStringBuf& input) {
using TUnsigned = std::make_unsigned_t<TSigned>;
constexpr size_t size = sizeof(TUnsigned);
constexpr TUnsigned shift = TUnsigned(1) << (size * 8 - 1);
return TSigned(DecodeUnsigned<TUnsigned, Desc>(input) - shift);
}
enum class EFPCode : ui8 {
NegInf = 0,
Neg = 1,
Zero = 2,
Pos = 3,
PosInf = 4,
Nan = 5
};
template <typename TFloat>
struct TFloatToInteger {};
template <>
struct TFloatToInteger<float> {
using TType = ui32;
};
template <>
struct TFloatToInteger<double> {
using TType = ui64;
};
static_assert(std::numeric_limits<float>::is_iec559, "float type is not iec559(ieee754)");
static_assert(std::numeric_limits<double>::is_iec559, "double type is not iec559(ieee754)");
template <typename TFloat, bool Desc>
Y_FORCE_INLINE
void EncodeFloating(TVector<ui8>& output, TFloat value) {
using TInteger = typename TFloatToInteger<TFloat>::TType;
EFPCode code;
switch (std::fpclassify(value)) {
case FP_NORMAL:
case FP_SUBNORMAL: {
auto integer = ReadUnaligned<TInteger>(&value);
if (value < 0) {
integer = ~integer;
code = EFPCode::Neg;
}
else {
code = EFPCode::Pos;
}
output.push_back(Desc ? 0xFF ^ ui8(code) : ui8(code));
EncodeUnsigned<TInteger, Desc>(output, integer);
return;
}
case FP_ZERO:
code = EFPCode::Zero;
break;
case FP_INFINITE:
code = value < 0 ? EFPCode::NegInf : EFPCode::PosInf;
break;
default:
code = EFPCode::Nan;
break;
}
output.push_back(Desc ? 0xFF ^ ui8(code) : ui8(code));
}
template <typename TFloat, bool Desc>
Y_FORCE_INLINE
TFloat DecodeFloating(TStringBuf& input) {
using TInteger = typename TFloatToInteger<TFloat>::TType;
EnsureInputSize(input, 1);
auto code = EFPCode(Desc ? 0xFF ^ input[0] : input[0]);
input.Skip(1);
bool negative;
switch (code) {
case EFPCode::Zero:
return 0;
case EFPCode::NegInf:
return -std::numeric_limits<TFloat>::infinity();
case EFPCode::PosInf:
return std::numeric_limits<TFloat>::infinity();
case EFPCode::Nan:
return std::numeric_limits<TFloat>::quiet_NaN();
case EFPCode::Neg:
negative = true;
break;
case EFPCode::Pos:
negative = false;
break;
default:
MKQL_ENSURE(false, "floating point data is corrupted");
}
auto integer = DecodeUnsigned<TInteger, Desc>(input);
if (negative) {
integer = ~integer;
}
return ReadUnaligned<TFloat>(&integer);
}
constexpr ui8 BlockCode = 0x1F;
constexpr size_t BlockSize = 15;
constexpr size_t BlockSizeUi64 = BlockSize / 8 + 1;
template <bool Desc>
Y_FORCE_INLINE
void EncodeString(TVector<ui8>& output, TStringBuf value) {
size_t part = 0;
while (!value.empty()) {
union {
ui8 buffer[BlockSize + 1];
ui64 buffer64[BlockSizeUi64];
};
part = std::min(value.size(), BlockSize);
if (part == BlockSize) {
std::memcpy(buffer + 1, value.data(), BlockSize);
}
else {
for (size_t i = 0; i < BlockSizeUi64; ++i) {
buffer64[i] = 0;
}
std::memcpy(buffer + 1, value.data(), part);
}
value.Skip(part);
buffer[0] = BlockCode;
if (Desc) {
for (size_t i = 0; i < BlockSizeUi64; ++i) {
buffer64[i] ^= std::numeric_limits<ui64>::max();
}
}
output.insert(output.end(), buffer, buffer + BlockSize + 1);
}
auto lastLength = ui8(part);
output.push_back(Desc ? 0xFF ^ lastLength : lastLength);
}
template <bool Desc>
Y_FORCE_INLINE
TStringBuf DecodeString(TStringBuf& input, TVector<ui8>& value) {
EnsureInputSize(input, 1);
ui8 code = Desc ? 0xFF ^ input[0] : input[0];
input.Skip(1);
if (code != BlockCode) {
MKQL_ENSURE(code == 0, TStringBuilder() << "unknown string block code: " << code);
return TStringBuf();
}
while (code == BlockCode) {
union {
ui8 buffer[BlockSize + 1];
ui64 buffer64[BlockSizeUi64];
};
EnsureInputSize(input, BlockSize + 1);
std::memcpy(buffer, input.data(), BlockSize + 1);
input.Skip(BlockSize + 1);
if (Desc) {
for (size_t i = 0; i < BlockSizeUi64; ++i) {
buffer64[i] ^= std::numeric_limits<ui64>::max();
}
}
value.insert(value.end(), buffer, buffer + BlockSize);
code = buffer[BlockSize];
}
auto begin = (const char*)value.begin();
auto end = (const char*)value.end() - BlockSize + code;
return TStringBuf(begin, end - begin);
}
}
} // NMiniKQL
} // NKikimr
|