1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
|
#include "mkql_block_decimal.h"
#include <yql/essentials/minikql/arrow/arrow_defs.h>
#include <yql/essentials/minikql/mkql_type_builder.h>
#include <yql/essentials/minikql/computation/mkql_block_impl.h>
#include <yql/essentials/minikql/computation/mkql_computation_node_holders.h>
#include <yql/essentials/minikql/mkql_node_builder.h>
#include <yql/essentials/minikql/mkql_node_cast.h>
#include <yql/essentials/public/udf/arrow/block_builder.h>
#include <yql/essentials/public/udf/arrow/block_reader.h>
#include <yql/essentials/public/udf/arrow/util.h>
#include <yql/essentials/public/decimal/yql_decimal.h>
namespace NKikimr {
namespace NMiniKQL {
namespace {
template<typename T, typename TRight>
struct TDecimalBlockExec {
NYql::NDecimal::TInt128 Apply(NYql::NDecimal::TInt128 left, TRight right) const {
return static_cast<const T*>(this)->Do(left, right);
}
template<typename U>
const U* GetScalarValue(const arrow::Scalar& scalar) const {
return reinterpret_cast<const U*>(GetPrimitiveScalarValuePtr(scalar));
}
template<>
const NYql::NDecimal::TInt128* GetScalarValue<NYql::NDecimal::TInt128>(const arrow::Scalar& scalar) const {
return reinterpret_cast<const NYql::NDecimal::TInt128*>(GetStringScalarValue(scalar).data());
}
void ArrayScalarCore(
const NYql::NDecimal::TInt128* val1Ptr,
const ui8* valid1,
const TRight* val2Ptr,
const ui8* valid2,
NYql::NDecimal::TInt128* resPtr,
ui8* resValid,
int64_t length,
int64_t offset1,
int64_t offset2) const {
val1Ptr += offset1;
Y_UNUSED(valid2);
Y_UNUSED(offset2);
for (int64_t i = 0; i < length; ++i, ++val1Ptr, ++resPtr) {
if (!valid1 || arrow::BitUtil::GetBit(valid1, i + offset1)) {
*resPtr = Apply(*val1Ptr, *val2Ptr);
arrow::BitUtil::SetBit(resValid, i);
} else {
arrow::BitUtil::ClearBit(resValid, i);
}
}
}
void ScalarArrayCore(
const NYql::NDecimal::TInt128* val1Ptr,
const ui8* valid1,
const TRight* val2Ptr,
const ui8* valid2,
NYql::NDecimal::TInt128* resPtr,
ui8* resValid,
int64_t length,
int64_t offset1,
int64_t offset2) const {
val2Ptr += offset2;
Y_UNUSED(valid1);
Y_UNUSED(offset1);
for (int64_t i = 0; i < length; ++i, ++val2Ptr, ++resPtr) {
if (!valid2 || arrow::BitUtil::GetBit(valid2, i + offset2)) {
*resPtr = Apply(*val1Ptr, *val2Ptr);
arrow::BitUtil::SetBit(resValid, i);
} else {
arrow::BitUtil::ClearBit(resValid, i);
}
}
}
void ArrayArrayCore(
const NYql::NDecimal::TInt128* val1Ptr,
const ui8* valid1,
const TRight* val2Ptr,
const ui8* valid2,
NYql::NDecimal::TInt128* resPtr,
ui8* resValid,
int64_t length,
int64_t offset1,
int64_t offset2) const
{
val1Ptr += offset1;
val2Ptr += offset2;
for (int64_t i = 0; i < length; ++i, ++val1Ptr, ++val2Ptr, ++resPtr) {
if ((!valid1 || arrow::BitUtil::GetBit(valid1, i + offset1)) &&
(!valid2 || arrow::BitUtil::GetBit(valid2, i + offset2))) {
*resPtr = Apply(*val1Ptr, *val2Ptr);
arrow::BitUtil::SetBit(resValid, i);
} else {
arrow::BitUtil::ClearBit(resValid, i);
}
}
}
arrow::Status ExecScalarScalar(arrow::compute::KernelContext* kernelCtx,
const arrow::compute::ExecBatch& batch, arrow::Datum* res) const
{
MKQL_ENSURE(batch.values.size() == 2, "Expected 2 args");
const auto& arg1 = batch.values[0];
const auto& arg2 = batch.values[1];
if (!arg1.scalar()->is_valid || !arg2.scalar()->is_valid) {
*res = arrow::MakeNullScalar(GetPrimitiveDataType<NYql::NDecimal::TInt128>());
} else {
const auto val1Ptr = GetScalarValue<NYql::NDecimal::TInt128>(*arg1.scalar());
const auto val2Ptr = GetScalarValue<TRight>(*arg2.scalar());
std::shared_ptr<arrow::Buffer> buffer(ARROW_RESULT(arrow::AllocateBuffer(16, kernelCtx->memory_pool())));
auto* mem = reinterpret_cast<NYql::NDecimal::TInt128*>(buffer->mutable_data());
auto resDatum = arrow::Datum(std::make_shared<TPrimitiveDataType<NYql::NDecimal::TInt128>::TScalarResult>(buffer));
*mem = Apply(*val1Ptr, *val2Ptr);
*res = resDatum;
}
return arrow::Status::OK();
}
arrow::Status ExecScalarArray(const arrow::compute::ExecBatch& batch, arrow::Datum* res) const
{
MKQL_ENSURE(batch.values.size() == 2, "Expected 2 args");
const auto& arg1 = batch.values[0];
const auto& arg2 = batch.values[1];
auto& resArr = *res->array();
if (arg1.scalar()->is_valid) {
const auto val1Ptr = GetScalarValue<NYql::NDecimal::TInt128>(*arg1.scalar());
const auto& arr2 = *arg2.array();
auto length = arr2.length;
const auto val2Ptr = reinterpret_cast<const TRight*>(arr2.buffers[1]->data());
const auto nullCount2 = arr2.GetNullCount();
const auto valid2 = (nullCount2 == 0) ? nullptr : arr2.GetValues<uint8_t>(0);
auto resPtr = reinterpret_cast<NYql::NDecimal::TInt128*>(resArr.buffers[1]->mutable_data());
auto resValid = res->array()->GetMutableValues<uint8_t>(0);
ScalarArrayCore(val1Ptr, nullptr, val2Ptr, valid2, resPtr, resValid, length, 0, arr2.offset);
} else {
GetBitmap(resArr, 0).SetBitsTo(false);
}
return arrow::Status::OK();
}
arrow::Status ExecArrayScalar(const arrow::compute::ExecBatch& batch, arrow::Datum* res) const
{
MKQL_ENSURE(batch.values.size() == 2, "Expected 2 args");
const auto& arg1 = batch.values[0];
const auto& arg2 = batch.values[1];
auto& resArr = *res->array();
if (arg2.scalar()->is_valid) {
const auto& arr1 = *arg1.array();
const auto val1Ptr = reinterpret_cast<const NYql::NDecimal::TInt128*>(arr1.buffers[1]->data());
auto length = arr1.length;
const auto nullCount1 = arr1.GetNullCount();
const auto valid1 = (nullCount1 == 0) ? nullptr : arr1.GetValues<uint8_t>(0);
const auto val2Ptr = GetScalarValue<TRight>(*arg2.scalar());
auto resPtr = reinterpret_cast<NYql::NDecimal::TInt128*>(resArr.buffers[1]->mutable_data());
auto resValid = res->array()->GetMutableValues<uint8_t>(0);
ArrayScalarCore(val1Ptr, valid1, val2Ptr, nullptr, resPtr, resValid, length, arr1.offset, 0);
} else {
GetBitmap(resArr, 0).SetBitsTo(false);
}
return arrow::Status::OK();
}
arrow::Status ExecArrayArray(const arrow::compute::ExecBatch& batch, arrow::Datum* res) const {
MKQL_ENSURE(batch.values.size() == 2, "Expected 2 args");
const auto& arg1 = batch.values[0];
const auto& arg2 = batch.values[1];
const auto& arr1 = *arg1.array();
const auto& arr2 = *arg2.array();
MKQL_ENSURE(arr1.length == arr2.length, "Expected same length");
auto length = arr1.length;
const auto val1Ptr = reinterpret_cast<const NYql::NDecimal::TInt128*>(arr1.buffers[1]->data());
const auto nullCount1 = arr1.GetNullCount();
const auto valid1 = (nullCount1 == 0) ? nullptr : arr1.GetValues<uint8_t>(0);
const auto val2Ptr = reinterpret_cast<const TRight*>(arr2.buffers[1]->data());
const auto nullCount2 = arr2.GetNullCount();
const auto valid2 = (nullCount2 == 0) ? nullptr : arr2.GetValues<uint8_t>(0);
auto& resArr = *res->array();
auto resPtr = reinterpret_cast<NYql::NDecimal::TInt128*>(resArr.buffers[1]->mutable_data());
auto resValid = res->array()->GetMutableValues<uint8_t>(0);
ArrayArrayCore(val1Ptr, valid1, val2Ptr, valid2, resPtr, resValid, length, arr1.offset, arr2.offset);
return arrow::Status::OK();
}
arrow::Status Exec(arrow::compute::KernelContext* ctx, const arrow::compute::ExecBatch& batch, arrow::Datum* res) const {
Y_UNUSED(ctx);
MKQL_ENSURE(batch.values.size() == 2, "Expected 2 args");
const auto& arg1 = batch.values[0];
const auto& arg2 = batch.values[1];
if (arg1.is_scalar()) {
if (arg2.is_scalar()) {
return ExecScalarScalar(ctx, batch, res);
} else {
return ExecScalarArray(batch, res);
}
} else {
if (arg2.is_scalar()) {
return ExecArrayScalar(batch, res);
} else {
return ExecArrayArray(batch, res);
}
}
return arrow::Status::OK();
}
};
template<typename TRight>
struct TDecimalMulBlockExec: NYql::NDecimal::TDecimalMultiplicator<TRight>, TDecimalBlockExec<TDecimalMulBlockExec<TRight>, TRight> {
TDecimalMulBlockExec(
ui8 precision,
ui8 scale)
: NYql::NDecimal::TDecimalMultiplicator<TRight>(precision, scale)
{ }
};
template<typename TRight>
struct TDecimalDivBlockExec: NYql::NDecimal::TDecimalDivisor<TRight>, TDecimalBlockExec<TDecimalDivBlockExec<TRight>, TRight> {
TDecimalDivBlockExec(
ui8 precision,
ui8 scale)
: NYql::NDecimal::TDecimalDivisor<TRight>(precision, scale)
{ }
};
template<typename TRight>
struct TDecimalModBlockExec: NYql::NDecimal::TDecimalRemainder<TRight>, TDecimalBlockExec<TDecimalModBlockExec<TRight>, TRight> {
TDecimalModBlockExec(
ui8 precision,
ui8 scale)
: NYql::NDecimal::TDecimalRemainder<TRight>(precision, scale)
{ }
};
template<template <typename> class TExec>
std::shared_ptr<arrow::compute::ScalarKernel> MakeBlockKernel(const TVector<TType*>& argTypes, TType* resultType) {
MKQL_ENSURE(argTypes.size() == 2, "Require 2 arguments");
MKQL_ENSURE(argTypes[0]->GetKind() == TType::EKind::Block, "Require block");
MKQL_ENSURE(argTypes[1]->GetKind() == TType::EKind::Block, "Require block");
MKQL_ENSURE(resultType->GetKind() == TType::EKind::Block, "Require block");
bool isOptional = false;
auto dataType1 = UnpackOptionalData(static_cast<TBlockType*>(argTypes[0])->GetItemType(), isOptional);
auto dataType2 = UnpackOptionalData(static_cast<TBlockType*>(argTypes[1])->GetItemType(), isOptional);
auto dataResultType = UnpackOptionalData(static_cast<TBlockType*>(resultType)->GetItemType(), isOptional);
MKQL_ENSURE(*dataType1->GetDataSlot() == NUdf::EDataSlot::Decimal, "Require decimal");
MKQL_ENSURE(*dataResultType->GetDataSlot() == NUdf::EDataSlot::Decimal, "Require decimal");
auto decimalType1 = static_cast<TDataDecimalType*>(dataType1);
auto decimalResultType = static_cast<TDataDecimalType*>(dataResultType);
MKQL_ENSURE(decimalType1->GetParams() == decimalResultType->GetParams(), "Require same precision/scale");
auto [precision, scale] = decimalType1->GetParams();
MKQL_ENSURE(precision >= 1&& precision <= 35, TStringBuilder() << "Wrong precision: " << (int)precision);
auto createKernel = [&](auto exec) {
auto k = std::make_shared<arrow::compute::ScalarKernel>(ConvertToInputTypes(argTypes), ConvertToOutputType(resultType),
[exec](arrow::compute::KernelContext* ctx, const arrow::compute::ExecBatch& batch, arrow::Datum* res) {
return exec->Exec(ctx, batch, res);
});
k->null_handling = arrow::compute::NullHandling::INTERSECTION;
return k;
};
switch (dataType2->GetSchemeType()) {
case NUdf::TDataType<NUdf::TDecimal>::Id: {
return createKernel(std::make_shared<TExec<NYql::NDecimal::TInt128>>(precision, scale));
}
#define MAKE_PRIMITIVE_TYPE_MUL(type) \
case NUdf::TDataType<type>::Id: { \
return createKernel(std::make_shared<TExec<type>>(precision, scale)); \
}
INTEGRAL_VALUE_TYPES(MAKE_PRIMITIVE_TYPE_MUL)
#undef MAKE_PRIMITIVE_TYPE_MUL
default:
Y_ABORT("Unupported type.");
}
}
template<template <typename> class TExec>
IComputationNode* WrapBlockDecimal(TStringBuf name, TCallable& callable, const TComputationNodeFactoryContext& ctx) {
MKQL_ENSURE(callable.GetInputsCount() == 2, "Expected 2 args");
auto first = callable.GetInput(0);
auto second = callable.GetInput(1);
auto firstType = AS_TYPE(TBlockType, first.GetStaticType());
auto secondType = AS_TYPE(TBlockType, second.GetStaticType());
auto firstCompute = LocateNode(ctx.NodeLocator, callable, 0);
auto secondCompute = LocateNode(ctx.NodeLocator, callable, 1);
TComputationNodePtrVector argsNodes = { firstCompute, secondCompute };
TVector<TType*> argsTypes = { firstType, secondType };
std::shared_ptr<arrow::compute::ScalarKernel> kernel = MakeBlockKernel<TExec>(argsTypes, callable.GetType()->GetReturnType());
return new TBlockFuncNode(ctx.Mutables, name, std::move(argsNodes), argsTypes, *kernel, kernel);
}
}
IComputationNode* WrapBlockDecimalMul(TCallable& callable, const TComputationNodeFactoryContext& ctx) {
return WrapBlockDecimal<TDecimalMulBlockExec>("DecimalMul", callable, ctx);
}
IComputationNode* WrapBlockDecimalDiv(TCallable& callable, const TComputationNodeFactoryContext& ctx) {
return WrapBlockDecimal<TDecimalDivBlockExec>("DecimalDiv", callable, ctx);
}
IComputationNode* WrapBlockDecimalMod(TCallable& callable, const TComputationNodeFactoryContext& ctx) {
return WrapBlockDecimal<TDecimalModBlockExec>("DecimalMod", callable, ctx);
}
}
}
|