aboutsummaryrefslogtreecommitdiffstats
path: root/yql/essentials/minikql/comp_nodes/mkql_block_coalesce.cpp
blob: 9ce760e9981d9b1fd0e4e585860ca0f73c938992 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#include "mkql_block_coalesce.h"

#include <yql/essentials/minikql/arrow/arrow_defs.h>
#include <yql/essentials/minikql/mkql_type_builder.h>
#include <yql/essentials/minikql/computation/mkql_block_impl.h>
#include <yql/essentials/minikql/computation/mkql_computation_node_holders.h>
#include <yql/essentials/minikql/mkql_node_builder.h>
#include <yql/essentials/minikql/mkql_node_cast.h>
#include <yql/essentials/public/udf/arrow/block_builder.h>
#include <yql/essentials/public/udf/arrow/block_reader.h>
#include <yql/essentials/public/udf/arrow/util.h>

#include <arrow/util/bitmap_ops.h>


namespace NKikimr {
namespace NMiniKQL {

namespace {

class TCoalesceBlockExec {
public:
    TCoalesceBlockExec(const std::shared_ptr<arrow::DataType>& returnArrowType, TType* firstItemType, TType* secondItemType, bool needUnwrapFirst)
        : ReturnArrowType_(returnArrowType)
        , FirstItemType_(firstItemType)
        , SecondItemType_(secondItemType)
        , NeedUnwrapFirst_(needUnwrapFirst)
    {}

    arrow::Status Exec(arrow::compute::KernelContext* ctx, const arrow::compute::ExecBatch& batch, arrow::Datum* res) const {
        const auto& first = batch.values[0];
        const auto& second = batch.values[1];
        MKQL_ENSURE(!first.is_scalar() || !second.is_scalar(), "Expected at least one array");
        size_t length = Max(first.length(), second.length());
        auto firstReader = NYql::NUdf::MakeBlockReader(TTypeInfoHelper(), FirstItemType_);
        auto secondReader = NYql::NUdf::MakeBlockReader(TTypeInfoHelper(), SecondItemType_);
        if (first.is_scalar()) {
            auto firstValue = firstReader->GetScalarItem(*first.scalar());
            if (firstValue) {
                auto builder = NYql::NUdf::MakeArrayBuilder(TTypeInfoHelper(), SecondItemType_, *ctx->memory_pool(), length, nullptr);
                builder->Add(NeedUnwrapFirst_ ? firstValue.GetOptionalValue() : firstValue, length);
                *res = builder->Build(true);
            } else {
                *res = second;
            }
        } else if (second.is_scalar()) {
            const auto& firstArray = *first.array();
            if (firstArray.GetNullCount() == 0) {
                *res = NeedUnwrapFirst_ ? Unwrap(firstArray, FirstItemType_) : first;
            } else if ((size_t)firstArray.GetNullCount() == length) {
                auto builder = NYql::NUdf::MakeArrayBuilder(TTypeInfoHelper(), SecondItemType_, *ctx->memory_pool(), length, nullptr);
                auto secondValue = secondReader->GetScalarItem(*second.scalar());
                builder->Add(secondValue, length);
                *res = builder->Build(true);
            } else {
                auto builder = NYql::NUdf::MakeArrayBuilder(TTypeInfoHelper(), SecondItemType_, *ctx->memory_pool(), length, nullptr);
                auto secondValue = secondReader->GetScalarItem(*second.scalar());
                for (size_t i = 0; i < length; ++i) {
                    auto firstItem = firstReader->GetItem(firstArray, i);
                    if (firstItem) {
                        builder->Add(NeedUnwrapFirst_ ? firstItem.GetOptionalValue() : firstItem);
                    } else {
                        builder->Add(secondValue);
                    }
                }

                *res = builder->Build(true);
            }
        } else {
            const auto& firstArray = *first.array();
            const auto& secondArray = *second.array();
            if (firstArray.GetNullCount() == 0) {
                *res = NeedUnwrapFirst_ ? Unwrap(firstArray, FirstItemType_) : first;
            } else if ((size_t)firstArray.GetNullCount() == length) {
                *res = second;
            } else {
                auto builder = NYql::NUdf::MakeArrayBuilder(TTypeInfoHelper(), SecondItemType_, *ctx->memory_pool(), length, nullptr);
                for (size_t i = 0; i < length; ++i) {
                    auto firstItem = firstReader->GetItem(firstArray, i);
                    if (firstItem) {
                        builder->Add(NeedUnwrapFirst_ ? firstItem.GetOptionalValue() : firstItem);
                    } else {
                        auto secondItem = secondReader->GetItem(secondArray, i);
                        builder->Add(secondItem);
                    }
                }

                *res = builder->Build(true);
            }
        }

        return arrow::Status::OK();
    }

private:
    const std::shared_ptr<arrow::DataType> ReturnArrowType_;
    TType* const FirstItemType_;
    TType* const SecondItemType_;
    const bool NeedUnwrapFirst_;
};

std::shared_ptr<arrow::compute::ScalarKernel> MakeBlockCoalesceKernel(const TVector<TType*>& argTypes, TType* resultType, bool needUnwrapFirst) {
    using TExec = TCoalesceBlockExec;

    std::shared_ptr<arrow::DataType> returnArrowType;
    MKQL_ENSURE(ConvertArrowType(AS_TYPE(TBlockType, resultType)->GetItemType(), returnArrowType), "Unsupported arrow type");
    auto exec = std::make_shared<TExec>(
        returnArrowType,
        AS_TYPE(TBlockType, argTypes[0])->GetItemType(),
        AS_TYPE(TBlockType, argTypes[1])->GetItemType(),
        needUnwrapFirst);
    auto kernel = std::make_shared<arrow::compute::ScalarKernel>(ConvertToInputTypes(argTypes), ConvertToOutputType(resultType),
        [exec](arrow::compute::KernelContext* ctx, const arrow::compute::ExecBatch& batch, arrow::Datum* res) {
        return exec->Exec(ctx, batch, res);
    });

    kernel->null_handling = arrow::compute::NullHandling::COMPUTED_NO_PREALLOCATE;
    return kernel;
}

} // namespace

IComputationNode* WrapBlockCoalesce(TCallable& callable, const TComputationNodeFactoryContext& ctx) {
    MKQL_ENSURE(callable.GetInputsCount() == 2, "Expected 2 args");

    auto first = callable.GetInput(0);
    auto second = callable.GetInput(1);

    auto firstType = AS_TYPE(TBlockType, first.GetStaticType());
    auto secondType = AS_TYPE(TBlockType, second.GetStaticType());

    auto firstItemType = firstType->GetItemType();
    auto secondItemType = secondType->GetItemType();
    MKQL_ENSURE(firstItemType->IsOptional() || firstItemType->IsPg(), "Expecting Optional or Pg type as first argument");

    bool needUnwrapFirst = false;
    if (!firstItemType->IsSameType(*secondItemType)) {
        needUnwrapFirst = true;
        bool firstOptional;
        firstItemType = UnpackOptional(firstItemType, firstOptional);
        MKQL_ENSURE(firstItemType->IsSameType(*secondItemType), "Uncompatible arguemnt types");
    }

    auto firstCompute = LocateNode(ctx.NodeLocator, callable, 0);
    auto secondCompute = LocateNode(ctx.NodeLocator, callable, 1);
    TComputationNodePtrVector argsNodes = { firstCompute, secondCompute };
    TVector<TType*> argsTypes = { firstType, secondType };

    auto kernel = MakeBlockCoalesceKernel(argsTypes, secondType, needUnwrapFirst);
    return new TBlockFuncNode(ctx.Mutables, "Coalesce", std::move(argsNodes), argsTypes, *kernel, kernel);
}

}
}