1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
|
// The code in this file is based on original ClickHouse source code
// which is licensed under Apache license v2.0
// See: https://github.com/ClickHouse/ClickHouse/
#pragma once
#include "arrow_clickhouse_types.h"
#include <memory>
#include <common/StringRef.h>
#include "AggregationCommon.h"
#include <Common/Arena.h>
#include <Common/HashTable/FixedHashMap.h>
#include <Common/HashTable/HashMap.h>
#include <Common/HashTable/StringHashMap.h>
#include <Columns/ColumnsHashing.h>
#include <Columns/ColumnAggregateFunction.h>
#include <DataStreams/IBlockStream_fwd.h>
namespace CH
{
/** Different data structures that can be used for aggregation
* For efficiency, the aggregation data itself is put into the pool.
* Data and pool ownership (states of aggregate functions)
* is acquired later - in `convertToBlocks` function, by the ColumnAggregateFunction object.
*
* Most data structures exist in two versions: normal and two-level (TwoLevel).
* A two-level hash table works a little slower with a small number of different keys,
* but with a large number of different keys scales better, because it allows
* parallelize some operations (merging, post-processing) in a natural way.
*
* To ensure efficient work over a wide range of conditions,
* first single-level hash tables are used,
* and when the number of different keys is large enough,
* they are converted to two-level ones.
*
* PS. There are many different approaches to the effective implementation of parallel and distributed aggregation,
* best suited for different cases, and this approach is just one of them, chosen for a combination of reasons.
*/
using AggregateDataPtr = char *;
using AggregatedDataWithoutKey = AggregateDataPtr;
using AggregatedDataWithUInt8Key = FixedImplicitZeroHashMapWithCalculatedSize<UInt8, AggregateDataPtr>;
using AggregatedDataWithUInt16Key = FixedImplicitZeroHashMap<UInt16, AggregateDataPtr>;
using AggregatedDataWithUInt32Key = HashMap<UInt32, AggregateDataPtr, HashCRC32<UInt32>>;
using AggregatedDataWithUInt64Key = HashMap<UInt64, AggregateDataPtr, HashCRC32<UInt64>>;
using AggregatedDataWithShortStringKey = StringHashMap<AggregateDataPtr>;
using AggregatedDataWithStringKey = HashMapWithSavedHash<StringRef, AggregateDataPtr>;
using AggregatedDataWithKeys64 = HashMap<UInt64, AggregateDataPtr, HashCRC32<UInt64>>;
using AggregatedDataWithKeys128 = HashMap<UInt128, AggregateDataPtr, UInt128HashCRC32>;
using AggregatedDataWithKeys256 = HashMap<UInt256, AggregateDataPtr, UInt256HashCRC32>;
/** Variants with better hash function, using more than 32 bits for hash.
* Using for merging phase of external aggregation, where number of keys may be far greater than 4 billion,
* but we keep in memory and merge only sub-partition of them simultaneously.
* TODO We need to switch for better hash function not only for external aggregation,
* but also for huge aggregation results on machines with terabytes of RAM.
*/
using AggregatedDataWithUInt64KeyHash64 = HashMap<UInt64, AggregateDataPtr, DefaultHash<UInt64>>;
using AggregatedDataWithStringKeyHash64 = HashMapWithSavedHash<StringRef, AggregateDataPtr, StringRefHash>;
using AggregatedDataWithKeys128Hash64 = HashMap<UInt128, AggregateDataPtr, UInt128Hash>;
using AggregatedDataWithKeys256Hash64 = HashMap<UInt256, AggregateDataPtr, UInt256Hash>;
template <typename Base>
struct AggregationDataWithNullKey : public Base
{
using Base::Base;
bool & hasNullKeyData() { return has_null_key_data; }
AggregateDataPtr & getNullKeyData() { return null_key_data; }
bool hasNullKeyData() const { return has_null_key_data; }
const AggregateDataPtr & getNullKeyData() const { return null_key_data; }
size_t size() const { return Base::size() + (has_null_key_data ? 1 : 0); }
bool empty() const { return Base::empty() && !has_null_key_data; }
void clear()
{
Base::clear();
has_null_key_data = false;
}
void clearAndShrink()
{
Base::clearAndShrink();
has_null_key_data = false;
}
private:
bool has_null_key_data = false;
AggregateDataPtr null_key_data = nullptr;
};
template <typename ... Types>
using HashTableWithNullKey = AggregationDataWithNullKey<HashMapTable<Types ...>>;
template <typename ... Types>
using StringHashTableWithNullKey = AggregationDataWithNullKey<StringHashMap<Types ...>>;
using AggregatedDataWithNullableUInt8Key = AggregationDataWithNullKey<AggregatedDataWithUInt8Key>;
using AggregatedDataWithNullableUInt16Key = AggregationDataWithNullKey<AggregatedDataWithUInt16Key>;
using AggregatedDataWithNullableUInt64Key = AggregationDataWithNullKey<AggregatedDataWithUInt64Key>;
using AggregatedDataWithNullableStringKey = AggregationDataWithNullKey<AggregatedDataWithStringKey>;
/// For the case where there is one numeric key.
/// FieldType is UInt8/16/32/64 for any type with corresponding bit width.
template <typename FieldType, typename TData,
bool consecutive_keys_optimization = true>
struct AggregationMethodOneNumber
{
using Data = TData;
using Key = typename Data::key_type;
using Mapped = typename Data::mapped_type;
Data data;
AggregationMethodOneNumber() = default;
template <typename Other>
AggregationMethodOneNumber(const Other & other) : data(other.data) {}
/// To use one `Method` in different threads, use different `State`.
using FixedFieldType = std::conditional_t<std::is_same_v<FieldType, char8_t>, uint8_t, FieldType>;
using State = ColumnsHashing::HashMethodOneNumber<typename Data::value_type,
Mapped, FixedFieldType, consecutive_keys_optimization>;
/// Shuffle key columns before `insertKeyIntoColumns` call if needed.
std::optional<Sizes> shuffleKeyColumns(std::vector<IColumn *> &, const Sizes &) { return {}; }
// Insert the key from the hash table into columns.
template <typename ColPtr>
static void insertKeyIntoColumns(const Key & key, const std::vector<ColPtr> & key_columns, const Sizes & /*key_sizes*/)
{
insertSameSizeNumber(*key_columns[0], key);
}
};
/// For the case where there is one string key.
template <typename TData>
struct AggregationMethodString
{
using Data = TData;
using Key = typename Data::key_type;
using Mapped = typename Data::mapped_type;
Data data;
AggregationMethodString() = default;
template <typename Other>
AggregationMethodString(const Other & other) : data(other.data) {}
using State = ColumnsHashing::HashMethodString<typename Data::value_type, Mapped>;
std::optional<Sizes> shuffleKeyColumns(std::vector<IColumn *> &, const Sizes &) { return {}; }
template <typename ColPtr>
static void insertKeyIntoColumns(const StringRef & key, const std::vector<ColPtr> & key_columns, const Sizes &)
{
insertString(*key_columns[0], key);
}
};
/// Same as above but without cache
template <typename TData>
struct AggregationMethodStringNoCache
{
using Data = TData;
using Key = typename Data::key_type;
using Mapped = typename Data::mapped_type;
Data data;
AggregationMethodStringNoCache() = default;
template <typename Other>
AggregationMethodStringNoCache(const Other & other) : data(other.data) {}
using State = ColumnsHashing::HashMethodString<typename Data::value_type, Mapped, true, false>;
std::optional<Sizes> shuffleKeyColumns(std::vector<IColumn *> &, const Sizes &) { return {}; }
template <typename ColPtr>
static void insertKeyIntoColumns(const StringRef & key, const std::vector<ColPtr> & key_columns, const Sizes &)
{
insertString(*key_columns[0], key);
}
};
/// For the case where there is one fixed-length string key.
template <typename TData>
struct AggregationMethodFixedString
{
using Data = TData;
using Key = typename Data::key_type;
using Mapped = typename Data::mapped_type;
Data data;
AggregationMethodFixedString() = default;
template <typename Other>
AggregationMethodFixedString(const Other & other) : data(other.data) {}
using State = ColumnsHashing::HashMethodFixedString<typename Data::value_type, Mapped>;
std::optional<Sizes> shuffleKeyColumns(std::vector<IColumn *> &, const Sizes &) { return {}; }
template <typename ColPtr>
static void insertKeyIntoColumns(const StringRef & key, const std::vector<ColPtr> & key_columns, const Sizes &)
{
insertFixedString(*key_columns[0], key);
}
};
/// Same as above but without cache
template <typename TData>
struct AggregationMethodFixedStringNoCache
{
using Data = TData;
using Key = typename Data::key_type;
using Mapped = typename Data::mapped_type;
Data data;
AggregationMethodFixedStringNoCache() = default;
template <typename Other>
AggregationMethodFixedStringNoCache(const Other & other) : data(other.data) {}
using State = ColumnsHashing::HashMethodFixedString<typename Data::value_type, Mapped, true, false>;
std::optional<Sizes> shuffleKeyColumns(std::vector<IColumn *> &, const Sizes &) { return {}; }
template <typename ColPtr>
static void insertKeyIntoColumns(const StringRef & key, const std::vector<ColPtr> & key_columns, const Sizes &)
{
insertFixedString(*key_columns[0], key);
}
};
/// For the case where all keys are of fixed length, and they fit in N (for example, 128) bits.
template <typename TData, bool has_nullable_keys_ = false, bool use_cache = true>
struct AggregationMethodKeysFixed
{
using Data = TData;
using Key = typename Data::key_type;
using Mapped = typename Data::mapped_type;
static constexpr bool has_nullable_keys = has_nullable_keys_;
Data data;
AggregationMethodKeysFixed() = default;
template <typename Other>
AggregationMethodKeysFixed(const Other & other) : data(other.data) {}
using State = ColumnsHashing::HashMethodKeysFixed<
typename Data::value_type,
Key,
Mapped,
has_nullable_keys,
false,
use_cache>;
#if 0
std::optional<Sizes> shuffleKeyColumns(std::vector<IColumn *> & key_columns, const Sizes & key_sizes)
{
return State::shuffleKeyColumns(key_columns, key_sizes);
}
#endif
template <typename ColPtr>
static void insertKeyIntoColumns(const Key & key, const std::vector<ColPtr> & key_columns, const Sizes & key_sizes)
{
size_t keys_count = key_columns.size();
static constexpr auto bitmap_size = has_nullable_keys ? std::tuple_size<KeysNullMap<Key>>::value : 0;
/// In any hash key value, column values to be read start just after the bitmap, if it exists.
const char * key_data = reinterpret_cast<const char *>(&key) + bitmap_size;
for (size_t i = 0; i < keys_count; ++i)
{
auto & observed_column = *key_columns[i];
if constexpr (has_nullable_keys)
{
const char * null_bitmap = reinterpret_cast<const char *>(&key);
size_t bucket = i / 8;
size_t offset = i % 8;
bool is_null = (null_bitmap[bucket] >> offset) & 1;
if (is_null)
{
observed_column.AppendNull().ok();
continue;
}
}
insertData(observed_column, StringRef(key_data, key_sizes[i]));
key_data += key_sizes[i];
}
}
};
/** Aggregates by concatenating serialized key values.
* The serialized value differs in that it uniquely allows to deserialize it, having only the position with which it starts.
* That is, for example, for strings, it contains first the serialized length of the string, and then the bytes.
* Therefore, when aggregating by several strings, there is no ambiguity.
*/
template <typename TData>
struct AggregationMethodSerialized
{
using Data = TData;
using Key = typename Data::key_type;
using Mapped = typename Data::mapped_type;
Data data;
AggregationMethodSerialized() = default;
template <typename Other>
AggregationMethodSerialized(const Other & other) : data(other.data) {}
using State = ColumnsHashing::HashMethodSerialized<typename Data::value_type, Mapped>;
std::optional<Sizes> shuffleKeyColumns(std::vector<IColumn *> &, const Sizes &) { return {}; }
template <typename ColPtr>
static void insertKeyIntoColumns(const StringRef & key, const std::vector<ColPtr> & key_columns, const Sizes &)
{
const auto * pos = key.data;
for (auto & column : key_columns)
pos = deserializeAndInsertFromArena(*column, pos);
}
};
class Aggregator;
using ColumnsHashing::HashMethodContext;
using ColumnsHashing::HashMethodContextPtr;
struct AggregatedDataVariants //: private boost::noncopyable
{
/** Working with states of aggregate functions in the pool is arranged in the following (inconvenient) way:
* - when aggregating, states are created in the pool using IAggregateFunction::create (inside - `placement new` of arbitrary structure);
* - they must then be destroyed using IAggregateFunction::destroy (inside - calling the destructor of arbitrary structure);
* - if aggregation is complete, then, in the Aggregator::convertToBlocks function, pointers to the states of aggregate functions
* are written to ColumnAggregateFunction; ColumnAggregateFunction "acquires ownership" of them, that is - calls `destroy` in its destructor.
* - if during the aggregation, before call to Aggregator::convertToBlocks, an exception was thrown,
* then the states of aggregate functions must still be destroyed,
* otherwise, for complex states (eg, AggregateFunctionUniq), there will be memory leaks;
* - in this case, to destroy states, the destructor calls Aggregator::destroyAggregateStates method,
* but only if the variable aggregator (see below) is not nullptr;
* - that is, until you transfer ownership of the aggregate function states in the ColumnAggregateFunction, set the variable `aggregator`,
* so that when an exception occurs, the states are correctly destroyed.
*
* PS. This can be corrected by making a pool that knows about which states of aggregate functions and in which order are put in it, and knows how to destroy them.
* But this can hardly be done simply because it is planned to put variable-length strings into the same pool.
* In this case, the pool will not be able to know with what offsets objects are stored.
*/
const Aggregator * aggregator = nullptr;
size_t keys_size{}; /// Number of keys. NOTE do we need this field?
Sizes key_sizes; /// Dimensions of keys, if keys of fixed length
/// Pools for states of aggregate functions. Ownership will be later transferred to ColumnAggregateFunction.
Arenas aggregates_pools;
Arena * aggregates_pool{}; /// The pool that is currently used for allocation.
/** Specialization for the case when there are no keys, and for keys not fitted into max_rows_to_group_by.
*/
AggregatedDataWithoutKey without_key = nullptr;
// Disable consecutive key optimization for Uint8/16, because they use a FixedHashMap
// and the lookup there is almost free, so we don't need to cache the last lookup result
std::unique_ptr<AggregationMethodOneNumber<UInt8, AggregatedDataWithUInt8Key, false>> key8;
std::unique_ptr<AggregationMethodOneNumber<UInt16, AggregatedDataWithUInt16Key, false>> key16;
std::unique_ptr<AggregationMethodOneNumber<UInt32, AggregatedDataWithUInt32Key>> key32;
std::unique_ptr<AggregationMethodOneNumber<UInt64, AggregatedDataWithUInt64Key>> key64;
std::unique_ptr<AggregationMethodStringNoCache<AggregatedDataWithShortStringKey>> key_string;
std::unique_ptr<AggregationMethodFixedStringNoCache<AggregatedDataWithShortStringKey>> key_fixed_string;
std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithUInt16Key, false, false>> keys16;
std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithUInt32Key>> keys32;
std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithUInt64Key>> keys64;
std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys128>> keys128;
std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys256>> keys256;
std::unique_ptr<AggregationMethodSerialized<AggregatedDataWithStringKey>> serialized;
std::unique_ptr<AggregationMethodOneNumber<UInt64, AggregatedDataWithUInt64KeyHash64>> key64_hash64;
std::unique_ptr<AggregationMethodString<AggregatedDataWithStringKeyHash64>> key_string_hash64;
std::unique_ptr<AggregationMethodFixedString<AggregatedDataWithStringKeyHash64>> key_fixed_string_hash64;
std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys128Hash64>> keys128_hash64;
std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys256Hash64>> keys256_hash64;
std::unique_ptr<AggregationMethodSerialized<AggregatedDataWithStringKeyHash64>> serialized_hash64;
/// Support for nullable keys.
std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys64, true>> nullable_keys64;
std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys128, true>> nullable_keys128;
std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys256, true>> nullable_keys256;
/// In this and similar macros, the option without_key is not considered.
#define APPLY_FOR_AGGREGATED_VARIANTS(M) \
M(key8) \
M(key16) \
M(key32) \
M(key64) \
M(key_string) \
M(key_fixed_string) \
M(keys16) \
M(keys32) \
M(keys64) \
M(keys128) \
M(keys256) \
M(serialized) \
M(key64_hash64) \
M(key_string_hash64) \
M(key_fixed_string_hash64) \
M(keys128_hash64) \
M(keys256_hash64) \
M(serialized_hash64) \
M(nullable_keys64) \
M(nullable_keys128) \
M(nullable_keys256) \
enum class Type
{
EMPTY = 0,
without_key,
#define M(NAME) NAME,
APPLY_FOR_AGGREGATED_VARIANTS(M)
#undef M
};
Type type = Type::EMPTY;
AggregatedDataVariants()
: aggregates_pools(1, std::make_shared<Arena>())
, aggregates_pool(aggregates_pools.back().get())
{}
bool empty() const { return type == Type::EMPTY; }
void invalidate() { type = Type::EMPTY; }
~AggregatedDataVariants();
void init(Type type_)
{
switch (type_)
{
case Type::EMPTY: break;
case Type::without_key: break;
#define M(NAME) \
case Type::NAME: NAME = std::make_unique<decltype(NAME)::element_type>(); break;
APPLY_FOR_AGGREGATED_VARIANTS(M)
#undef M
}
type = type_;
}
/// Number of rows (different keys).
size_t size() const
{
switch (type)
{
case Type::EMPTY: return 0;
case Type::without_key: return 1;
#define M(NAME) \
case Type::NAME: return NAME->data.size() + (without_key != nullptr);
APPLY_FOR_AGGREGATED_VARIANTS(M)
#undef M
}
__builtin_unreachable();
}
/// The size without taking into account the row in which data is written for the calculation of TOTALS.
size_t sizeWithoutOverflowRow() const
{
switch (type)
{
case Type::EMPTY: return 0;
case Type::without_key: return 1;
#define M(NAME) \
case Type::NAME: return NAME->data.size();
APPLY_FOR_AGGREGATED_VARIANTS(M)
#undef M
}
__builtin_unreachable();
}
const char * getMethodName() const
{
switch (type)
{
case Type::EMPTY: return "EMPTY";
case Type::without_key: return "without_key";
#define M(NAME) \
case Type::NAME: return #NAME;
APPLY_FOR_AGGREGATED_VARIANTS(M)
#undef M
}
__builtin_unreachable();
}
static HashMethodContextPtr createCache(Type type, const HashMethodContext::Settings & settings)
{
switch (type)
{
case Type::without_key: return nullptr;
#define M(NAME) \
case Type::NAME: \
{ \
using TPtr ## NAME = decltype(AggregatedDataVariants::NAME); \
using T ## NAME = typename TPtr ## NAME ::element_type; \
return T ## NAME ::State::createContext(settings); \
}
APPLY_FOR_AGGREGATED_VARIANTS(M)
#undef M
default:
throw Exception("Unknown aggregated data variant.");
}
}
};
using AggregatedDataVariantsPtr = std::shared_ptr<AggregatedDataVariants>;
using ManyAggregatedDataVariants = std::vector<AggregatedDataVariantsPtr>;
using ManyAggregatedDataVariantsPtr = std::shared_ptr<ManyAggregatedDataVariants>;
/** How are "total" values calculated with WITH TOTALS?
* (For more details, see TotalsHavingTransform.)
*
* In the absence of group_by_overflow_mode = 'any', the data is aggregated as usual, but the states of the aggregate functions are not finalized.
* Later, the aggregate function states for all rows (passed through HAVING) are merged into one - this will be TOTALS.
*
* If there is group_by_overflow_mode = 'any', the data is aggregated as usual, except for the keys that did not fit in max_rows_to_group_by.
* For these keys, the data is aggregated into one additional row - see below under the names `overflow_row`, `overflows`...
* Later, the aggregate function states for all rows (passed through HAVING) are merged into one,
* also overflow_row is added or not added (depending on the totals_mode setting) also - this will be TOTALS.
*/
/** Aggregates the source of the blocks.
*/
class Aggregator final
{
public:
struct Params
{
/// Data structure of source blocks.
Header src_header;
/// Data structure of intermediate blocks before merge.
Header intermediate_header;
/// What to count.
const ColumnNumbers keys;
const AggregateDescriptions aggregates;
const size_t keys_size;
const size_t aggregates_size;
/// The settings of approximate calculation of GROUP BY.
const bool overflow_row; /// Do we need to put into AggregatedDataVariants::without_key aggregates for keys that are not in max_rows_to_group_by.
const size_t max_rows_to_group_by = 0;
const OverflowMode group_by_overflow_mode = OverflowMode::THROW;
/// Return empty result when aggregating without keys on empty set.
bool empty_result_for_aggregation_by_empty_set = false;
/// Settings is used to determine cache size. No threads are created.
size_t max_threads;
bool has_nullable_key = true;
Params(const Header & src_header_,
const Header & intermediate_header_,
const ColumnNumbers & keys_,
const AggregateDescriptions & aggregates_,
bool overflow_row_,
size_t max_threads_ = 1)
: src_header(src_header_)
, intermediate_header(intermediate_header_)
, keys(keys_)
, aggregates(aggregates_)
, keys_size(keys.size())
, aggregates_size(aggregates.size())
, overflow_row(overflow_row_)
, max_threads(max_threads_)
{}
Params(bool is_megre, const Header & header_,
const ColumnNumbers & keys_, const AggregateDescriptions & aggregates_, bool overflow_row_, size_t max_threads_ = 1)
: Params((is_megre ? Header() : header_), (is_megre ? header_ : Header()), keys_, aggregates_, overflow_row_, max_threads_)
{}
static Header getHeader(
const Header & src_header,
const Header & intermediate_header,
const ColumnNumbers & keys,
const AggregateDescriptions & aggregates,
bool final);
Header getHeader(bool final) const
{
return getHeader(src_header, intermediate_header, keys, aggregates, final);
}
};
explicit Aggregator(const Params & params_);
/// Aggregate the source. Get the result in the form of one of the data structures.
void execute(const BlockInputStreamPtr & stream, AggregatedDataVariants & result);
using AggregateColumns = std::vector<ColumnRawPtrs>;
using AggregateFunctionsPlainPtrs = std::vector<const IAggregateFunction *>;
/// Process one block. Return false if the processing should be aborted (with group_by_overflow_mode = 'break').
bool executeOnBlock(Columns columns,
size_t row_begin, size_t row_end,
AggregatedDataVariants & result,
ColumnRawPtrs & key_columns,
AggregateColumns & aggregate_columns, /// Passed to not create them anew for each block
bool & no_more_keys) const;
/// Used for aggregate projection.
bool mergeOnBlock(Block block, AggregatedDataVariants & result, bool & no_more_keys) const;
/** Convert the aggregation data structure into a block.
* If overflow_row = true, then aggregates for rows that are not included in max_rows_to_group_by are put in the first block.
*
* If final = false, then ColumnAggregateFunction is created as the aggregation columns with the state of the calculations,
* which can then be combined with other states (for distributed query processing).
* If final = true, then columns with ready values are created as aggregate columns.
*/
BlocksList convertToBlocks(AggregatedDataVariants & data_variants, bool final) const;
ManyAggregatedDataVariants prepareVariantsToMerge(ManyAggregatedDataVariants & data_variants) const;
/** Merge the stream of partially aggregated blocks into one data structure.
* (Pre-aggregate several blocks that represent the result of independent aggregations from remote servers.)
*/
void mergeStream(const BlockInputStreamPtr & stream, AggregatedDataVariants & result);
using BucketToBlocks = std::map<Int32, BlocksList>;
/// Merge partially aggregated blocks separated to buckets into one data structure.
void mergeBlocks(BucketToBlocks && bucket_to_blocks, AggregatedDataVariants & result);
/// Merge several partially aggregated blocks into one.
/// Precondition: for all blocks block.info.is_overflows flag must be the same.
/// (either all blocks are from overflow data or none blocks are).
/// The resulting block has the same value of is_overflows flag.
Block mergeBlocks(BlocksList & blocks, bool final);
/// Get data structure of the result.
Header getHeader(bool final) const;
private:
friend struct AggregatedDataVariants;
friend class MergingAndConvertingBlockInputStream;
Params params;
AggregatedDataVariants::Type method_chosen;
Sizes key_sizes;
HashMethodContextPtr aggregation_state_cache;
AggregateFunctionsPlainPtrs aggregate_functions;
/** This array serves two purposes.
*
* Function arguments are collected side by side, and they do not need to be collected from different places. Also the array is made zero-terminated.
* The inner loop (for the case without_key) is almost twice as compact; performance gain of about 30%.
*/
struct AggregateFunctionInstruction
{
const IAggregateFunction * that{};
size_t state_offset{};
const IColumn ** arguments{};
const IAggregateFunction * batch_that{};
const IColumn ** batch_arguments{};
};
using AggregateFunctionInstructions = std::vector<AggregateFunctionInstruction>;
Sizes offsets_of_aggregate_states; /// The offset to the n-th aggregate function in a row of aggregate functions.
size_t total_size_of_aggregate_states = 0; /// The total size of the row from the aggregate functions.
// add info to track alignment requirement
// If there are states whose alignment are v1, ..vn, align_aggregate_states will be max(v1, ... vn)
size_t align_aggregate_states = 1;
bool all_aggregates_has_trivial_destructor = false;
/** Select the aggregation method based on the number and types of keys. */
AggregatedDataVariants::Type chooseAggregationMethod();
/** Create states of aggregate functions for one key.
*/
void createAggregateStates(AggregateDataPtr & aggregate_data) const;
/** Call `destroy` methods for states of aggregate functions.
* Used in the exception handler for aggregation, since RAII in this case is not applicable.
*/
void destroyAllAggregateStates(AggregatedDataVariants & result) const;
/// Process one data block, aggregate the data into a hash table.
template <typename Method>
void executeImpl(
Method & method,
Arena * aggregates_pool,
size_t row_begin,
size_t row_end,
ColumnRawPtrs & key_columns,
AggregateFunctionInstruction * aggregate_instructions,
bool no_more_keys,
AggregateDataPtr overflow_row) const;
/// Specialization for a particular value no_more_keys.
template <bool no_more_keys, typename Method>
void executeImplBatch(
Method & method,
typename Method::State & state,
Arena * aggregates_pool,
size_t row_begin,
size_t row_end,
AggregateFunctionInstruction * aggregate_instructions,
AggregateDataPtr overflow_row) const;
/// For case when there are no keys (all aggregate into one row).
void executeWithoutKeyImpl(
AggregatedDataWithoutKey & res,
size_t row_begin,
size_t row_end,
AggregateFunctionInstruction * aggregate_instructions,
Arena * arena) const;
/// Merge NULL key data from hash table `src` into `dst`.
template <typename Method, typename Table>
void mergeDataNullKey(
Table & table_dst,
Table & table_src,
Arena * arena) const;
/// Merge data from hash table `src` into `dst`.
template <typename Method, typename Table>
void mergeDataImpl(
Table & table_dst,
Table & table_src,
Arena * arena) const;
/// Merge data from hash table `src` into `dst`, but only for keys that already exist in dst. In other cases, merge the data into `overflows`.
template <typename Method, typename Table>
void mergeDataNoMoreKeysImpl(
Table & table_dst,
AggregatedDataWithoutKey & overflows,
Table & table_src,
Arena * arena) const;
/// Same, but ignores the rest of the keys.
template <typename Method, typename Table>
void mergeDataOnlyExistingKeysImpl(
Table & table_dst,
Table & table_src,
Arena * arena) const;
void mergeWithoutKeyDataImpl(
ManyAggregatedDataVariants & non_empty_data) const;
template <typename Method>
void mergeSingleLevelDataImpl(
ManyAggregatedDataVariants & non_empty_data) const;
template <typename Method, typename Table>
void convertToBlockImpl(
Method & method,
Table & data,
MutableColumns & key_columns,
AggregateColumnsData & aggregate_columns,
MutableColumns & final_aggregate_columns,
Arena * arena,
bool final) const;
template <typename Mapped>
void insertAggregatesIntoColumns(
Mapped & mapped,
MutableColumns & final_aggregate_columns,
Arena * arena) const;
template <typename Method, typename Table>
void convertToBlockImplFinal(
Method & method,
Table & data,
const MutableColumns & key_columns,
MutableColumns & final_aggregate_columns,
Arena * arena) const;
template <typename Method, typename Table>
void convertToBlockImplNotFinal(
Method & method,
Table & data,
const MutableColumns & key_columns,
AggregateColumnsData & aggregate_columns) const;
template <typename Filler>
Block prepareBlockAndFill(
AggregatedDataVariants & data_variants,
bool final,
size_t rows,
Filler && filler) const;
template <typename Method>
Block convertOneBucketToBlock(
AggregatedDataVariants & data_variants,
Method & method,
Arena * arena,
bool final,
size_t bucket) const;
Block prepareBlockAndFillWithoutKey(AggregatedDataVariants & data_variants, bool final, bool is_overflows = false) const;
Block prepareBlockAndFillSingleLevel(AggregatedDataVariants & data_variants, bool final) const;
template <bool no_more_keys, typename Method, typename Table>
void mergeStreamsImplCase(
Block & block,
Arena * aggregates_pool,
Method & method,
Table & data,
AggregateDataPtr overflow_row) const;
template <typename Method, typename Table>
void mergeStreamsImpl(
Block & block,
Arena * aggregates_pool,
Method & method,
Table & data,
AggregateDataPtr overflow_row,
bool no_more_keys) const;
void mergeWithoutKeyStreamsImpl(
Block & block,
AggregatedDataVariants & result) const;
template <typename Method>
void mergeBucketImpl(
ManyAggregatedDataVariants & data, Int32 bucket, Arena * arena, std::atomic<bool> * is_cancelled = nullptr) const;
template <typename Method>
void convertBlockToTwoLevelImpl(
Method & method,
Arena * pool,
ColumnRawPtrs & key_columns,
const Block & source,
std::vector<Block> & destinations) const;
template <typename Method, typename Table>
void destroyImpl(Table & table) const;
void destroyWithoutKey(
AggregatedDataVariants & result) const;
/** Checks constraints on the maximum number of keys for aggregation.
* If it is exceeded, then, depending on the group_by_overflow_mode, either
* - throws an exception;
* - returns false, which means that execution must be aborted;
* - sets the variable no_more_keys to true.
*/
bool checkLimits(size_t result_size, bool & no_more_keys) const;
void prepareAggregateInstructions(
Columns columns,
AggregateColumns & aggregate_columns,
Columns & materialized_columns,
AggregateFunctionInstructions & instructions) const;
};
/** Get the aggregation variant by its type. */
template <typename Method> Method & getDataVariant(AggregatedDataVariants & variants);
#define M(NAME) \
template <> inline decltype(AggregatedDataVariants::NAME)::element_type & getDataVariant<decltype(AggregatedDataVariants::NAME)::element_type>(AggregatedDataVariants & variants) { return *variants.NAME; }
APPLY_FOR_AGGREGATED_VARIANTS(M)
#undef M
}
|