aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/google.golang.org/grpc/benchmark/latency/latency.go
blob: d5cc44f9b5ee9fba29a08c51965d3f45fbfad874 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
/*
 *
 * Copyright 2017 gRPC authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 */

// Package latency provides wrappers for net.Conn, net.Listener, and
// net.Dialers, designed to interoperate to inject real-world latency into
// network connections.
package latency

import (
	"bytes"
	"context"
	"encoding/binary"
	"fmt"
	"io"
	"net"
	"time"
)

// Dialer is a function matching the signature of net.Dial.
type Dialer func(network, address string) (net.Conn, error)

// TimeoutDialer is a function matching the signature of net.DialTimeout.
type TimeoutDialer func(network, address string, timeout time.Duration) (net.Conn, error)

// ContextDialer is a function matching the signature of
// net.Dialer.DialContext.
type ContextDialer func(ctx context.Context, network, address string) (net.Conn, error)

// Network represents a network with the given bandwidth, latency, and MTU
// (Maximum Transmission Unit) configuration, and can produce wrappers of
// net.Listeners, net.Conn, and various forms of dialing functions.  The
// Listeners and Dialers/Conns on both sides of connections must come from this
// package, but need not be created from the same Network.  Latency is computed
// when sending (in Write), and is injected when receiving (in Read).  This
// allows senders' Write calls to be non-blocking, as in real-world
// applications.
//
// Note: Latency is injected by the sender specifying the absolute time data
// should be available, and the reader delaying until that time arrives to
// provide the data.  This package attempts to counter-act the effects of clock
// drift and existing network latency by measuring the delay between the
// sender's transmission time and the receiver's reception time during startup.
// No attempt is made to measure the existing bandwidth of the connection.
type Network struct {
	Kbps    int           // Kilobits per second; if non-positive, infinite
	Latency time.Duration // One-way latency (sending); if non-positive, no delay
	MTU     int           // Bytes per packet; if non-positive, infinite
}

var (
	//Local simulates local network.
	Local = Network{0, 0, 0}
	//LAN simulates local area network network.
	LAN = Network{100 * 1024, 2 * time.Millisecond, 1500}
	//WAN simulates wide area network.
	WAN = Network{20 * 1024, 30 * time.Millisecond, 1500}
	//Longhaul simulates bad network.
	Longhaul = Network{1000 * 1024, 200 * time.Millisecond, 9000}
)

// Conn returns a net.Conn that wraps c and injects n's latency into that
// connection.  This function also imposes latency for connection creation.
// If n's Latency is lower than the measured latency in c, an error is
// returned.
func (n *Network) Conn(c net.Conn) (net.Conn, error) {
	start := now()
	nc := &conn{Conn: c, network: n, readBuf: new(bytes.Buffer)}
	if err := nc.sync(); err != nil {
		return nil, err
	}
	sleep(start.Add(nc.delay).Sub(now()))
	return nc, nil
}

type conn struct {
	net.Conn
	network *Network

	readBuf     *bytes.Buffer // one packet worth of data received
	lastSendEnd time.Time     // time the previous Write should be fully on the wire
	delay       time.Duration // desired latency - measured latency
}

// header is sent before all data transmitted by the application.
type header struct {
	ReadTime int64 // Time the reader is allowed to read this packet (UnixNano)
	Sz       int32 // Size of the data in the packet
}

func (c *conn) Write(p []byte) (n int, err error) {
	tNow := now()
	if c.lastSendEnd.Before(tNow) {
		c.lastSendEnd = tNow
	}
	for len(p) > 0 {
		pkt := p
		if c.network.MTU > 0 && len(pkt) > c.network.MTU {
			pkt = pkt[:c.network.MTU]
			p = p[c.network.MTU:]
		} else {
			p = nil
		}
		if c.network.Kbps > 0 {
			if congestion := c.lastSendEnd.Sub(tNow) - c.delay; congestion > 0 {
				// The network is full; sleep until this packet can be sent.
				sleep(congestion)
				tNow = tNow.Add(congestion)
			}
		}
		c.lastSendEnd = c.lastSendEnd.Add(c.network.pktTime(len(pkt)))
		hdr := header{ReadTime: c.lastSendEnd.Add(c.delay).UnixNano(), Sz: int32(len(pkt))}
		if err := binary.Write(c.Conn, binary.BigEndian, hdr); err != nil {
			return n, err
		}
		x, err := c.Conn.Write(pkt)
		n += x
		if err != nil {
			return n, err
		}
	}
	return n, nil
}

func (c *conn) Read(p []byte) (n int, err error) {
	if c.readBuf.Len() == 0 {
		var hdr header
		if err := binary.Read(c.Conn, binary.BigEndian, &hdr); err != nil {
			return 0, err
		}
		defer func() { sleep(time.Unix(0, hdr.ReadTime).Sub(now())) }()

		if _, err := io.CopyN(c.readBuf, c.Conn, int64(hdr.Sz)); err != nil {
			return 0, err
		}
	}
	// Read from readBuf.
	return c.readBuf.Read(p)
}

// sync does a handshake and then measures the latency on the network in
// coordination with the other side.
func (c *conn) sync() error {
	const (
		pingMsg  = "syncPing"
		warmup   = 10               // minimum number of iterations to measure latency
		giveUp   = 50               // maximum number of iterations to measure latency
		accuracy = time.Millisecond // req'd accuracy to stop early
		goodRun  = 3                // stop early if latency within accuracy this many times
	)

	type syncMsg struct {
		SendT int64 // Time sent.  If zero, stop.
		RecvT int64 // Time received.  If zero, fill in and respond.
	}

	// A trivial handshake
	if err := binary.Write(c.Conn, binary.BigEndian, []byte(pingMsg)); err != nil {
		return err
	}
	var ping [8]byte
	if err := binary.Read(c.Conn, binary.BigEndian, &ping); err != nil {
		return err
	} else if string(ping[:]) != pingMsg {
		return fmt.Errorf("malformed handshake message: %v (want %q)", ping, pingMsg)
	}

	// Both sides are alive and syncing.  Calculate network delay / clock skew.
	att := 0
	good := 0
	var latency time.Duration
	localDone, remoteDone := false, false
	send := true
	for !localDone || !remoteDone {
		if send {
			if err := binary.Write(c.Conn, binary.BigEndian, syncMsg{SendT: now().UnixNano()}); err != nil {
				return err
			}
			att++
			send = false
		}

		// Block until we get a syncMsg
		m := syncMsg{}
		if err := binary.Read(c.Conn, binary.BigEndian, &m); err != nil {
			return err
		}

		if m.RecvT == 0 {
			// Message initiated from other side.
			if m.SendT == 0 {
				remoteDone = true
				continue
			}
			// Send response.
			m.RecvT = now().UnixNano()
			if err := binary.Write(c.Conn, binary.BigEndian, m); err != nil {
				return err
			}
			continue
		}

		lag := time.Duration(m.RecvT - m.SendT)
		latency += lag
		avgLatency := latency / time.Duration(att)
		if e := lag - avgLatency; e > -accuracy && e < accuracy {
			good++
		} else {
			good = 0
		}
		if att < giveUp && (att < warmup || good < goodRun) {
			send = true
			continue
		}
		localDone = true
		latency = avgLatency
		// Tell the other side we're done.
		if err := binary.Write(c.Conn, binary.BigEndian, syncMsg{}); err != nil {
			return err
		}
	}
	if c.network.Latency <= 0 {
		return nil
	}
	c.delay = c.network.Latency - latency
	if c.delay < 0 {
		return fmt.Errorf("measured network latency (%v) higher than desired latency (%v)", latency, c.network.Latency)
	}
	return nil
}

// Listener returns a net.Listener that wraps l and injects n's latency in its
// connections.
func (n *Network) Listener(l net.Listener) net.Listener {
	return &listener{Listener: l, network: n}
}

type listener struct {
	net.Listener
	network *Network
}

func (l *listener) Accept() (net.Conn, error) {
	c, err := l.Listener.Accept()
	if err != nil {
		return nil, err
	}
	return l.network.Conn(c)
}

// Dialer returns a Dialer that wraps d and injects n's latency in its
// connections.  n's Latency is also injected to the connection's creation.
func (n *Network) Dialer(d Dialer) Dialer {
	return func(network, address string) (net.Conn, error) {
		conn, err := d(network, address)
		if err != nil {
			return nil, err
		}
		return n.Conn(conn)
	}
}

// TimeoutDialer returns a TimeoutDialer that wraps d and injects n's latency
// in its connections.  n's Latency is also injected to the connection's
// creation.
func (n *Network) TimeoutDialer(d TimeoutDialer) TimeoutDialer {
	return func(network, address string, timeout time.Duration) (net.Conn, error) {
		conn, err := d(network, address, timeout)
		if err != nil {
			return nil, err
		}
		return n.Conn(conn)
	}
}

// ContextDialer returns a ContextDialer that wraps d and injects n's latency
// in its connections.  n's Latency is also injected to the connection's
// creation.
func (n *Network) ContextDialer(d ContextDialer) ContextDialer {
	return func(ctx context.Context, network, address string) (net.Conn, error) {
		conn, err := d(ctx, network, address)
		if err != nil {
			return nil, err
		}
		return n.Conn(conn)
	}
}

// pktTime returns the time it takes to transmit one packet of data of size b
// in bytes.
func (n *Network) pktTime(b int) time.Duration {
	if n.Kbps <= 0 {
		return time.Duration(0)
	}
	return time.Duration(b) * time.Second / time.Duration(n.Kbps*(1024/8))
}

// Wrappers for testing

var now = time.Now
var sleep = time.Sleep