aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/google.golang.org/grpc/balancer/rls/cache_test.go
blob: 80185f39c92952b029a4efa4f11be5303b31af5e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
/*
 *
 * Copyright 2021 gRPC authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 */

package rls

import (
	"testing"
	"time"

	"github.com/google/go-cmp/cmp"
	"github.com/google/go-cmp/cmp/cmpopts"
	"google.golang.org/grpc/internal/backoff"
)

var (
	cacheKeys = []cacheKey{
		{path: "0", keys: "a"},
		{path: "1", keys: "b"},
		{path: "2", keys: "c"},
		{path: "3", keys: "d"},
		{path: "4", keys: "e"},
	}

	longDuration  = 10 * time.Minute
	shortDuration = 1 * time.Millisecond
	cacheEntries  []*cacheEntry
)

func initCacheEntries() {
	// All entries have a dummy size of 1 to simplify resize operations.
	cacheEntries = []*cacheEntry{
		{
			// Entry is valid and minimum expiry time has not expired.
			expiryTime:        time.Now().Add(longDuration),
			earliestEvictTime: time.Now().Add(longDuration),
			size:              1,
		},
		{
			// Entry is valid and is in backoff.
			expiryTime:   time.Now().Add(longDuration),
			backoffTime:  time.Now().Add(longDuration),
			backoffState: &backoffState{timer: time.NewTimer(longDuration)},
			size:         1,
		},
		{
			// Entry is valid, and not in backoff.
			expiryTime: time.Now().Add(longDuration),
			size:       1,
		},
		{
			// Entry is invalid.
			expiryTime: time.Time{}.Add(shortDuration),
			size:       1,
		},
		{
			// Entry is invalid valid and backoff has expired.
			expiryTime:        time.Time{}.Add(shortDuration),
			backoffExpiryTime: time.Time{}.Add(shortDuration),
			size:              1,
		},
	}
}

func (s) TestLRU_BasicOperations(t *testing.T) {
	initCacheEntries()
	// Create an LRU and add some entries to it.
	lru := newLRU()
	for _, k := range cacheKeys {
		lru.addEntry(k)
	}

	// Get the least recent entry. This should be the first entry we added.
	if got, want := lru.getLeastRecentlyUsed(), cacheKeys[0]; got != want {
		t.Fatalf("lru.getLeastRecentlyUsed() = %v, want %v", got, want)
	}

	// Iterate through the slice of keys we added earlier, making them the most
	// recent entry, one at a time. The least recent entry at that point should
	// be the next entry from our slice of keys.
	for i, k := range cacheKeys {
		lru.makeRecent(k)

		lruIndex := (i + 1) % len(cacheKeys)
		if got, want := lru.getLeastRecentlyUsed(), cacheKeys[lruIndex]; got != want {
			t.Fatalf("lru.getLeastRecentlyUsed() = %v, want %v", got, want)
		}
	}

	// Iterate through the slice of keys we added earlier, removing them one at
	// a time The least recent entry at that point should be the next entry from
	// our slice of keys, except for the last one because the lru will be empty.
	for i, k := range cacheKeys {
		lru.removeEntry(k)

		var want cacheKey
		if i < len(cacheKeys)-1 {
			want = cacheKeys[i+1]
		}
		if got := lru.getLeastRecentlyUsed(); got != want {
			t.Fatalf("lru.getLeastRecentlyUsed() = %v, want %v", got, want)
		}
	}
}

func (s) TestDataCache_BasicOperations(t *testing.T) {
	initCacheEntries()
	dc := newDataCache(5, nil)
	for i, k := range cacheKeys {
		dc.addEntry(k, cacheEntries[i])
	}
	for i, k := range cacheKeys {
		entry := dc.getEntry(k)
		if !cmp.Equal(entry, cacheEntries[i], cmp.AllowUnexported(cacheEntry{}, backoffState{}), cmpopts.IgnoreUnexported(time.Timer{})) {
			t.Fatalf("Data cache lookup for key %v returned entry %v, want %v", k, entry, cacheEntries[i])
		}
	}
}

func (s) TestDataCache_AddForcesResize(t *testing.T) {
	initCacheEntries()
	dc := newDataCache(1, nil)

	// The first entry in cacheEntries has a minimum expiry time in the future.
	// This entry would stop the resize operation since we do not evict entries
	// whose minimum expiration time is in the future. So, we do not use that
	// entry in this test. The entry being added has a running backoff timer.
	evicted, ok := dc.addEntry(cacheKeys[1], cacheEntries[1])
	if evicted || !ok {
		t.Fatalf("dataCache.addEntry() returned (%v, %v) want (false, true)", evicted, ok)
	}

	// Add another entry leading to the eviction of the above entry which has a
	// running backoff timer. The first return value is expected to be true.
	backoffCancelled, ok := dc.addEntry(cacheKeys[2], cacheEntries[2])
	if !backoffCancelled || !ok {
		t.Fatalf("dataCache.addEntry() returned (%v, %v) want (true, true)", backoffCancelled, ok)
	}

	// Add another entry leading to the eviction of the above entry which does not
	// have a running backoff timer. This should evict the above entry, but the
	// first return value is expected to be false.
	backoffCancelled, ok = dc.addEntry(cacheKeys[3], cacheEntries[3])
	if backoffCancelled || !ok {
		t.Fatalf("dataCache.addEntry() returned (%v, %v) want (false, true)", backoffCancelled, ok)
	}
}

func (s) TestDataCache_Resize(t *testing.T) {
	initCacheEntries()
	dc := newDataCache(5, nil)
	for i, k := range cacheKeys {
		dc.addEntry(k, cacheEntries[i])
	}

	// The first cache entry (with a key of cacheKeys[0]) that we added has an
	// earliestEvictTime in the future. As part of the resize operation, we
	// traverse the cache in least recently used order, and this will be first
	// entry that we will encounter. And since the earliestEvictTime is in the
	// future, the resize operation will stop, leaving the cache bigger than
	// what was asked for.
	if dc.resize(1) {
		t.Fatalf("dataCache.resize() returned true, want false")
	}
	if dc.currentSize != 5 {
		t.Fatalf("dataCache.size is %d, want 5", dc.currentSize)
	}

	// Remove the entry with earliestEvictTime in the future and retry the
	// resize operation.
	dc.removeEntryForTesting(cacheKeys[0])
	if !dc.resize(1) {
		t.Fatalf("dataCache.resize() returned false, want true")
	}
	if dc.currentSize != 1 {
		t.Fatalf("dataCache.size is %d, want 1", dc.currentSize)
	}
}

func (s) TestDataCache_EvictExpiredEntries(t *testing.T) {
	initCacheEntries()
	dc := newDataCache(5, nil)
	for i, k := range cacheKeys {
		dc.addEntry(k, cacheEntries[i])
	}

	// The last two entries in the cacheEntries list have expired, and will be
	// evicted. The first three should still remain in the cache.
	if !dc.evictExpiredEntries() {
		t.Fatal("dataCache.evictExpiredEntries() returned false, want true")
	}
	if dc.currentSize != 3 {
		t.Fatalf("dataCache.size is %d, want 3", dc.currentSize)
	}
	for i := 0; i < 3; i++ {
		entry := dc.getEntry(cacheKeys[i])
		if !cmp.Equal(entry, cacheEntries[i], cmp.AllowUnexported(cacheEntry{}, backoffState{}), cmpopts.IgnoreUnexported(time.Timer{})) {
			t.Fatalf("Data cache lookup for key %v returned entry %v, want %v", cacheKeys[i], entry, cacheEntries[i])
		}
	}
}

func (s) TestDataCache_ResetBackoffState(t *testing.T) {
	type fakeBackoff struct {
		backoff.Strategy
	}

	initCacheEntries()
	dc := newDataCache(5, nil)
	for i, k := range cacheKeys {
		dc.addEntry(k, cacheEntries[i])
	}

	newBackoffState := &backoffState{bs: &fakeBackoff{}}
	if updatePicker := dc.resetBackoffState(newBackoffState); !updatePicker {
		t.Fatal("dataCache.resetBackoffState() returned updatePicker is false, want true")
	}

	// Make sure that the entry with no backoff state was not touched.
	if entry := dc.getEntry(cacheKeys[0]); cmp.Equal(entry.backoffState, newBackoffState, cmp.AllowUnexported(backoffState{})) {
		t.Fatal("dataCache.resetBackoffState() touched entries without a valid backoffState")
	}

	// Make sure that the entry with a valid backoff state was reset.
	entry := dc.getEntry(cacheKeys[1])
	if diff := cmp.Diff(entry.backoffState, newBackoffState, cmp.AllowUnexported(backoffState{})); diff != "" {
		t.Fatalf("unexpected diff in backoffState for cache entry after dataCache.resetBackoffState(): %s", diff)
	}
}