1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package stat
import (
"errors"
"math"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/mat"
)
// PC is a type for computing and extracting the principal components of a
// matrix. The results of the principal components analysis are only valid
// if the call to PrincipalComponents was successful.
type PC struct {
n, d int
weights []float64
svd *mat.SVD
ok bool
}
// PrincipalComponents performs a weighted principal components analysis on the
// matrix of the input data which is represented as an n×d matrix a where each
// row is an observation and each column is a variable.
//
// PrincipalComponents centers the variables but does not scale the variance.
//
// The weights slice is used to weight the observations. If weights is nil, each
// weight is considered to have a value of one, otherwise the length of weights
// must match the number of observations or PrincipalComponents will panic.
//
// PrincipalComponents returns whether the analysis was successful.
func (c *PC) PrincipalComponents(a mat.Matrix, weights []float64) (ok bool) {
c.n, c.d = a.Dims()
if weights != nil && len(weights) != c.n {
panic("stat: len(weights) != observations")
}
c.svd, c.ok = svdFactorizeCentered(c.svd, a, weights)
if c.ok {
c.weights = append(c.weights[:0], weights...)
}
return c.ok
}
// VectorsTo returns the component direction vectors of a principal components
// analysis. The vectors are returned in the columns of a d×min(n, d) matrix.
//
// If dst is empty, VectorsTo will resize dst to be d×min(n, d). When dst is
// non-empty, VectorsTo will panic if dst is not d×min(n, d). VectorsTo will also
// panic if the receiver does not contain a successful PC.
func (c *PC) VectorsTo(dst *mat.Dense) {
if !c.ok {
panic("stat: use of unsuccessful principal components analysis")
}
if dst.IsEmpty() {
dst.ReuseAs(c.d, min(c.n, c.d))
} else {
if d, n := dst.Dims(); d != c.d || n != min(c.n, c.d) {
panic(mat.ErrShape)
}
}
c.svd.VTo(dst)
}
// VarsTo returns the column variances of the principal component scores,
// b * vecs, where b is a matrix with centered columns. Variances are returned
// in descending order.
// If dst is not nil it is used to store the variances and returned.
// Vars will panic if the receiver has not successfully performed a principal
// components analysis or dst is not nil and the length of dst is not min(n, d).
func (c *PC) VarsTo(dst []float64) []float64 {
if !c.ok {
panic("stat: use of unsuccessful principal components analysis")
}
if dst != nil && len(dst) != min(c.n, c.d) {
panic("stat: length of slice does not match analysis")
}
dst = c.svd.Values(dst)
var f float64
if c.weights == nil {
f = 1 / float64(c.n-1)
} else {
f = 1 / (floats.Sum(c.weights) - 1)
}
for i, v := range dst {
dst[i] = f * v * v
}
return dst
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
// CC is a type for computing the canonical correlations of a pair of matrices.
// The results of the canonical correlation analysis are only valid
// if the call to CanonicalCorrelations was successful.
type CC struct {
// n is the number of observations used to
// construct the canonical correlations.
n int
// xd and yd are used for size checks.
xd, yd int
x, y, c *mat.SVD
ok bool
}
// CanonicalCorrelations performs a canonical correlation analysis of the
// input data x and y, columns of which should be interpretable as two sets
// of measurements on the same observations (rows). These observations are
// optionally weighted by weights. The result of the analysis is stored in
// the receiver if the analysis is successful.
//
// Canonical correlation analysis finds associations between two sets of
// variables on the same observations by finding linear combinations of the two
// sphered datasets that maximize the correlation between them.
//
// Some notation: let Xc and Yc denote the centered input data matrices x
// and y (column means subtracted from each column), let Sx and Sy denote the
// sample covariance matrices within x and y respectively, and let Sxy denote
// the covariance matrix between x and y. The sphered data can then be expressed
// as Xc * Sx^{-1/2} and Yc * Sy^{-1/2} respectively, and the correlation matrix
// between the sphered data is called the canonical correlation matrix,
// Sx^{-1/2} * Sxy * Sy^{-1/2}. In cases where S^{-1/2} is ambiguous for some
// covariance matrix S, S^{-1/2} is taken to be E * D^{-1/2} * Eᵀ where S can
// be eigendecomposed as S = E * D * Eᵀ.
//
// The canonical correlations are the correlations between the corresponding
// pairs of canonical variables and can be obtained with c.Corrs(). Canonical
// variables can be obtained by projecting the sphered data into the left and
// right eigenvectors of the canonical correlation matrix, and these
// eigenvectors can be obtained with c.Left(m, true) and c.Right(m, true)
// respectively. The canonical variables can also be obtained directly from the
// centered raw data by using the back-transformed eigenvectors which can be
// obtained with c.Left(m, false) and c.Right(m, false) respectively.
//
// The first pair of left and right eigenvectors of the canonical correlation
// matrix can be interpreted as directions into which the respective sphered
// data can be projected such that the correlation between the two projections
// is maximized. The second pair and onwards solve the same optimization but
// under the constraint that they are uncorrelated (orthogonal in sphered space)
// to previous projections.
//
// CanonicalCorrelations will panic if the inputs x and y do not have the same
// number of rows.
//
// The slice weights is used to weight the observations. If weights is nil, each
// weight is considered to have a value of one, otherwise the length of weights
// must match the number of observations (rows of both x and y) or
// CanonicalCorrelations will panic.
//
// More details can be found at
// https://en.wikipedia.org/wiki/Canonical_correlation
// or in Chapter 3 of
// Koch, Inge. Analysis of multivariate and high-dimensional data.
// Vol. 32. Cambridge University Press, 2013. ISBN: 9780521887939
func (c *CC) CanonicalCorrelations(x, y mat.Matrix, weights []float64) error {
var yn int
c.n, c.xd = x.Dims()
yn, c.yd = y.Dims()
if c.n != yn {
panic("stat: unequal number of observations")
}
if weights != nil && len(weights) != c.n {
panic("stat: len(weights) != observations")
}
// Center and factorize x and y.
c.x, c.ok = svdFactorizeCentered(c.x, x, weights)
if !c.ok {
return errors.New("stat: failed to factorize x")
}
c.y, c.ok = svdFactorizeCentered(c.y, y, weights)
if !c.ok {
return errors.New("stat: failed to factorize y")
}
var xu, xv, yu, yv mat.Dense
c.x.UTo(&xu)
c.x.VTo(&xv)
c.y.UTo(&yu)
c.y.VTo(&yv)
// Calculate and factorise the canonical correlation matrix.
var ccor mat.Dense
ccor.Product(&xv, xu.T(), &yu, yv.T())
if c.c == nil {
c.c = &mat.SVD{}
}
c.ok = c.c.Factorize(&ccor, mat.SVDThin)
if !c.ok {
return errors.New("stat: failed to factorize ccor")
}
return nil
}
// CorrsTo returns the canonical correlations, using dst if it is not nil.
// If dst is not nil and len(dst) does not match the number of columns in
// the y input matrix, Corrs will panic.
func (c *CC) CorrsTo(dst []float64) []float64 {
if !c.ok {
panic("stat: canonical correlations missing or invalid")
}
if dst != nil && len(dst) != c.yd {
panic("stat: length of destination does not match input dimension")
}
return c.c.Values(dst)
}
// LeftTo returns the left eigenvectors of the canonical correlation matrix if
// spheredSpace is true. If spheredSpace is false it returns these eigenvectors
// back-transformed to the original data space.
//
// If dst is empty, LeftTo will resize dst to be xd×yd. When dst is
// non-empty, LeftTo will panic if dst is not xd×yd. LeftTo will also
// panic if the receiver does not contain a successful CC.
func (c *CC) LeftTo(dst *mat.Dense, spheredSpace bool) {
if !c.ok || c.n < 2 {
panic("stat: canonical correlations missing or invalid")
}
if dst.IsEmpty() {
dst.ReuseAs(c.xd, c.yd)
} else {
if d, n := dst.Dims(); d != c.xd || n != c.yd {
panic(mat.ErrShape)
}
}
c.c.UTo(dst)
if spheredSpace {
return
}
xs := c.x.Values(nil)
xv := &mat.Dense{}
c.x.VTo(xv)
scaleColsReciSqrt(xv, xs)
dst.Product(xv, xv.T(), dst)
dst.Scale(math.Sqrt(float64(c.n-1)), dst)
}
// RightTo returns the right eigenvectors of the canonical correlation matrix if
// spheredSpace is true. If spheredSpace is false it returns these eigenvectors
// back-transformed to the original data space.
//
// If dst is empty, RightTo will resize dst to be yd×yd. When dst is
// non-empty, RightTo will panic if dst is not yd×yd. RightTo will also
// panic if the receiver does not contain a successful CC.
func (c *CC) RightTo(dst *mat.Dense, spheredSpace bool) {
if !c.ok || c.n < 2 {
panic("stat: canonical correlations missing or invalid")
}
if dst.IsEmpty() {
dst.ReuseAs(c.yd, c.yd)
} else {
if d, n := dst.Dims(); d != c.yd || n != c.yd {
panic(mat.ErrShape)
}
}
c.c.VTo(dst)
if spheredSpace {
return
}
ys := c.y.Values(nil)
yv := &mat.Dense{}
c.y.VTo(yv)
scaleColsReciSqrt(yv, ys)
dst.Product(yv, yv.T(), dst)
dst.Scale(math.Sqrt(float64(c.n-1)), dst)
}
func svdFactorizeCentered(work *mat.SVD, m mat.Matrix, weights []float64) (svd *mat.SVD, ok bool) {
n, d := m.Dims()
centered := mat.NewDense(n, d, nil)
col := make([]float64, n)
for j := 0; j < d; j++ {
mat.Col(col, j, m)
floats.AddConst(-Mean(col, weights), col)
centered.SetCol(j, col)
}
for i, w := range weights {
floats.Scale(math.Sqrt(w), centered.RawRowView(i))
}
if work == nil {
work = &mat.SVD{}
}
ok = work.Factorize(centered, mat.SVDThin)
return work, ok
}
// scaleColsReciSqrt scales the columns of cols
// by the reciprocal square-root of vals.
func scaleColsReciSqrt(cols *mat.Dense, vals []float64) {
if cols == nil {
panic("stat: input nil")
}
n, d := cols.Dims()
if len(vals) != d {
panic("stat: input length mismatch")
}
col := make([]float64, n)
for j := 0; j < d; j++ {
mat.Col(col, j, cols)
floats.Scale(math.Sqrt(1/vals[j]), col)
cols.SetCol(j, col)
}
}
|