aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/gonum.org/v1/gonum/stat/distuv/weibull.go
blob: bbf49271c887049e7a9009691cb3f7fcfcbdf480 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package distuv

import (
	"math"

	"golang.org/x/exp/rand"
)

// Weibull distribution. Valid range for x is [0,+∞).
type Weibull struct {
	// Shape parameter of the distribution. A value of 1 represents
	// the exponential distribution. A value of 2 represents the
	// Rayleigh distribution. Valid range is (0,+∞).
	K float64
	// Scale parameter of the distribution. Valid range is (0,+∞).
	Lambda float64
	// Source of random numbers
	Src rand.Source
}

// CDF computes the value of the cumulative density function at x.
func (w Weibull) CDF(x float64) float64 {
	if x < 0 {
		return 0
	}
	return -math.Expm1(-math.Pow(x/w.Lambda, w.K))
}

// Entropy returns the entropy of the distribution.
func (w Weibull) Entropy() float64 {
	return eulerGamma*(1-1/w.K) + math.Log(w.Lambda/w.K) + 1
}

// ExKurtosis returns the excess kurtosis of the distribution.
func (w Weibull) ExKurtosis() float64 {
	return (-6*w.gammaIPow(1, 4) + 12*w.gammaIPow(1, 2)*math.Gamma(1+2/w.K) - 3*w.gammaIPow(2, 2) - 4*math.Gamma(1+1/w.K)*math.Gamma(1+3/w.K) + math.Gamma(1+4/w.K)) / math.Pow(math.Gamma(1+2/w.K)-w.gammaIPow(1, 2), 2)
}

// gammIPow is a shortcut for computing the gamma function to a power.
func (w Weibull) gammaIPow(i, pow float64) float64 {
	return math.Pow(math.Gamma(1+i/w.K), pow)
}

// LogProb computes the natural logarithm of the value of the probability
// density function at x. -Inf is returned if x is less than zero.
//
// Special cases occur when x == 0, and the result depends on the shape
// parameter as follows:
//
//	If 0 < K < 1, LogProb returns +Inf.
//	If K == 1, LogProb returns 0.
//	If K > 1, LogProb returns -Inf.
func (w Weibull) LogProb(x float64) float64 {
	if x < 0 {
		return math.Inf(-1)
	}
	if x == 0 && w.K == 1 {
		return 0
	}
	return math.Log(w.K) - math.Log(w.Lambda) + (w.K-1)*(math.Log(x)-math.Log(w.Lambda)) - math.Pow(x/w.Lambda, w.K)
}

// LogSurvival returns the log of the survival function (complementary CDF) at x.
func (w Weibull) LogSurvival(x float64) float64 {
	if x < 0 {
		return 0
	}
	return -math.Pow(x/w.Lambda, w.K)
}

// Mean returns the mean of the probability distribution.
func (w Weibull) Mean() float64 {
	return w.Lambda * math.Gamma(1+1/w.K)
}

// Median returns the median of the normal distribution.
func (w Weibull) Median() float64 {
	return w.Lambda * math.Pow(ln2, 1/w.K)
}

// Mode returns the mode of the normal distribution.
//
// The mode is NaN in the special case where the K (shape) parameter
// is less than 1.
func (w Weibull) Mode() float64 {
	if w.K > 1 {
		return w.Lambda * math.Pow((w.K-1)/w.K, 1/w.K)
	}
	return 0
}

// NumParameters returns the number of parameters in the distribution.
func (Weibull) NumParameters() int {
	return 2
}

// Prob computes the value of the probability density function at x.
func (w Weibull) Prob(x float64) float64 {
	if x < 0 {
		return 0
	}
	return math.Exp(w.LogProb(x))
}

// Quantile returns the inverse of the cumulative probability distribution.
func (w Weibull) Quantile(p float64) float64 {
	if p < 0 || p > 1 {
		panic(badPercentile)
	}
	return w.Lambda * math.Pow(-math.Log(1-p), 1/w.K)
}

// Rand returns a random sample drawn from the distribution.
func (w Weibull) Rand() float64 {
	var rnd float64
	if w.Src == nil {
		rnd = rand.Float64()
	} else {
		rnd = rand.New(w.Src).Float64()
	}
	return w.Quantile(rnd)
}

// Score returns the score function with respect to the parameters of the
// distribution at the input location x. The score function is the derivative
// of the log-likelihood at x with respect to the parameters
//
//	(∂/∂θ) log(p(x;θ))
//
// If deriv is non-nil, len(deriv) must equal the number of parameters otherwise
// Score will panic, and the derivative is stored in-place into deriv. If deriv
// is nil a new slice will be allocated and returned.
//
// The order is [∂LogProb / ∂K, ∂LogProb / ∂λ].
//
// For more information, see https://en.wikipedia.org/wiki/Score_%28statistics%29.
//
// Special cases:
//
//	Score(x) = [NaN, NaN] for x <= 0
func (w Weibull) Score(deriv []float64, x float64) []float64 {
	if deriv == nil {
		deriv = make([]float64, w.NumParameters())
	}
	if len(deriv) != w.NumParameters() {
		panic(badLength)
	}
	if x > 0 {
		deriv[0] = 1/w.K + math.Log(x) - math.Log(w.Lambda) - (math.Log(x)-math.Log(w.Lambda))*math.Pow(x/w.Lambda, w.K)
		deriv[1] = (w.K * (math.Pow(x/w.Lambda, w.K) - 1)) / w.Lambda
		return deriv
	}
	deriv[0] = math.NaN()
	deriv[1] = math.NaN()
	return deriv
}

// ScoreInput returns the score function with respect to the input of the
// distribution at the input location specified by x. The score function is the
// derivative of the log-likelihood
//
//	(d/dx) log(p(x)) .
//
// Special cases:
//
//	ScoreInput(x) = NaN for x <= 0
func (w Weibull) ScoreInput(x float64) float64 {
	if x > 0 {
		return (-w.K*math.Pow(x/w.Lambda, w.K) + w.K - 1) / x
	}
	return math.NaN()
}

// Skewness returns the skewness of the distribution.
func (w Weibull) Skewness() float64 {
	stdDev := w.StdDev()
	firstGamma, firstGammaSign := math.Lgamma(1 + 3/w.K)
	logFirst := firstGamma + 3*(math.Log(w.Lambda)-math.Log(stdDev))
	logSecond := math.Log(3) + math.Log(w.Mean()) + 2*math.Log(stdDev) - 3*math.Log(stdDev)
	logThird := 3 * (math.Log(w.Mean()) - math.Log(stdDev))
	return float64(firstGammaSign)*math.Exp(logFirst) - math.Exp(logSecond) - math.Exp(logThird)
}

// StdDev returns the standard deviation of the probability distribution.
func (w Weibull) StdDev() float64 {
	return math.Sqrt(w.Variance())
}

// Survival returns the survival function (complementary CDF) at x.
func (w Weibull) Survival(x float64) float64 {
	return math.Exp(w.LogSurvival(x))
}

// setParameters modifies the parameters of the distribution.
func (w *Weibull) setParameters(p []Parameter) {
	if len(p) != w.NumParameters() {
		panic("weibull: incorrect number of parameters to set")
	}
	if p[0].Name != "K" {
		panic("weibull: " + panicNameMismatch)
	}
	if p[1].Name != "λ" {
		panic("weibull: " + panicNameMismatch)
	}
	w.K = p[0].Value
	w.Lambda = p[1].Value
}

// Variance returns the variance of the probability distribution.
func (w Weibull) Variance() float64 {
	return math.Pow(w.Lambda, 2) * (math.Gamma(1+2/w.K) - w.gammaIPow(1, 2))
}

// parameters returns the parameters of the distribution.
func (w Weibull) parameters(p []Parameter) []Parameter {
	nParam := w.NumParameters()
	if p == nil {
		p = make([]Parameter, nParam)
	} else if len(p) != nParam {
		panic("weibull: improper parameter length")
	}
	p[0].Name = "K"
	p[0].Value = w.K
	p[1].Name = "λ"
	p[1].Value = w.Lambda
	return p

}