aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/gonum.org/v1/gonum/stat/distuv/laplace.go
blob: 09fdc2e497618116c68266bb2caa30aece4f9ade (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package distuv

import (
	"math"
	"sort"

	"golang.org/x/exp/rand"
	"gonum.org/v1/gonum/stat"
)

// Laplace represents the Laplace distribution (https://en.wikipedia.org/wiki/Laplace_distribution).
type Laplace struct {
	Mu    float64 // Mean of the Laplace distribution
	Scale float64 // Scale of the Laplace distribution
	Src   rand.Source
}

// CDF computes the value of the cumulative density function at x.
func (l Laplace) CDF(x float64) float64 {
	if x < l.Mu {
		return 0.5 * math.Exp((x-l.Mu)/l.Scale)
	}
	return 1 - 0.5*math.Exp(-(x-l.Mu)/l.Scale)
}

// Entropy returns the entropy of the distribution.
func (l Laplace) Entropy() float64 {
	return 1 + math.Log(2*l.Scale)
}

// ExKurtosis returns the excess kurtosis of the distribution.
func (l Laplace) ExKurtosis() float64 {
	return 3
}

// Fit sets the parameters of the probability distribution from the
// data samples x with relative weights w.
// If weights is nil, then all the weights are 1.
// If weights is not nil, then the len(weights) must equal len(samples).
//
// Note: Laplace distribution has no FitPrior because it has no sufficient
// statistics.
func (l *Laplace) Fit(samples, weights []float64) {
	if weights != nil && len(samples) != len(weights) {
		panic(badLength)
	}

	if len(samples) == 0 {
		panic(errNoSamples)
	}
	if len(samples) == 1 {
		l.Mu = samples[0]
		l.Scale = 0
		return
	}

	var (
		sortedSamples []float64
		sortedWeights []float64
	)
	if sort.Float64sAreSorted(samples) {
		sortedSamples = samples
		sortedWeights = weights
	} else {
		// Need to copy variables so the input variables aren't effected by the sorting
		sortedSamples = make([]float64, len(samples))
		copy(sortedSamples, samples)
		sortedWeights := make([]float64, len(samples))
		copy(sortedWeights, weights)

		stat.SortWeighted(sortedSamples, sortedWeights)
	}

	// The (weighted) median of the samples is the maximum likelihood estimate
	// of the mean parameter
	// TODO: Rethink quantile type when stat has more options
	l.Mu = stat.Quantile(0.5, stat.Empirical, sortedSamples, sortedWeights)

	// The scale parameter is the average absolute distance
	// between the sample and the mean
	var absError float64
	var sumWeights float64
	if weights != nil {
		for i, v := range samples {
			absError += weights[i] * math.Abs(l.Mu-v)
			sumWeights += weights[i]
		}
		l.Scale = absError / sumWeights
	} else {
		for _, v := range samples {
			absError += math.Abs(l.Mu - v)
		}
		l.Scale = absError / float64(len(samples))
	}
}

// LogProb computes the natural logarithm of the value of the probability density
// function at x.
func (l Laplace) LogProb(x float64) float64 {
	return -math.Ln2 - math.Log(l.Scale) - math.Abs(x-l.Mu)/l.Scale
}

// parameters returns the parameters of the distribution.
func (l Laplace) parameters(p []Parameter) []Parameter {
	nParam := l.NumParameters()
	if p == nil {
		p = make([]Parameter, nParam)
	} else if len(p) != nParam {
		panic(badLength)
	}
	p[0].Name = "Mu"
	p[0].Value = l.Mu
	p[1].Name = "Scale"
	p[1].Value = l.Scale
	return p
}

// Mean returns the mean of the probability distribution.
func (l Laplace) Mean() float64 {
	return l.Mu
}

// Median returns the median of the LaPlace distribution.
func (l Laplace) Median() float64 {
	return l.Mu
}

// Mode returns the mode of the LaPlace distribution.
func (l Laplace) Mode() float64 {
	return l.Mu
}

// NumParameters returns the number of parameters in the distribution.
func (l Laplace) NumParameters() int {
	return 2
}

// Quantile returns the inverse of the cumulative probability distribution.
func (l Laplace) Quantile(p float64) float64 {
	if p < 0 || p > 1 {
		panic(badPercentile)
	}
	if p < 0.5 {
		return l.Mu + l.Scale*math.Log(1+2*(p-0.5))
	}
	return l.Mu - l.Scale*math.Log(1-2*(p-0.5))
}

// Prob computes the value of the probability density function at x.
func (l Laplace) Prob(x float64) float64 {
	return math.Exp(l.LogProb(x))
}

// Rand returns a random sample drawn from the distribution.
func (l Laplace) Rand() float64 {
	var rnd float64
	if l.Src == nil {
		rnd = rand.Float64()
	} else {
		rnd = rand.New(l.Src).Float64()
	}
	u := rnd - 0.5
	if u < 0 {
		return l.Mu + l.Scale*math.Log(1+2*u)
	}
	return l.Mu - l.Scale*math.Log(1-2*u)
}

// Score returns the score function with respect to the parameters of the
// distribution at the input location x. The score function is the derivative
// of the log-likelihood at x with respect to the parameters
//
//	(∂/∂θ) log(p(x;θ))
//
// If deriv is non-nil, len(deriv) must equal the number of parameters otherwise
// Score will panic, and the derivative is stored in-place into deriv. If deriv
// is nil a new slice will be allocated and returned.
//
// The order is [∂LogProb / ∂Mu, ∂LogProb / ∂Scale].
//
// For more information, see https://en.wikipedia.org/wiki/Score_%28statistics%29.
//
// Special cases:
//
//	Score(l.Mu) = [NaN, -1/l.Scale]
func (l Laplace) Score(deriv []float64, x float64) []float64 {
	if deriv == nil {
		deriv = make([]float64, l.NumParameters())
	}
	if len(deriv) != l.NumParameters() {
		panic(badLength)
	}
	diff := x - l.Mu
	if diff > 0 {
		deriv[0] = 1 / l.Scale
	} else if diff < 0 {
		deriv[0] = -1 / l.Scale
	} else {
		// must be NaN
		deriv[0] = math.NaN()
	}

	deriv[1] = math.Abs(diff)/(l.Scale*l.Scale) - 1/l.Scale
	return deriv
}

// ScoreInput returns the score function with respect to the input of the
// distribution at the input location specified by x. The score function is the
// derivative of the log-likelihood
//
//	(d/dx) log(p(x)) .
//
// Special cases:
//
//	ScoreInput(l.Mu) = NaN
func (l Laplace) ScoreInput(x float64) float64 {
	diff := x - l.Mu
	if diff == 0 {
		return math.NaN()
	}
	if diff > 0 {
		return -1 / l.Scale
	}
	return 1 / l.Scale
}

// Skewness returns the skewness of the distribution.
func (Laplace) Skewness() float64 {
	return 0
}

// StdDev returns the standard deviation of the distribution.
func (l Laplace) StdDev() float64 {
	return math.Sqrt2 * l.Scale
}

// Survival returns the survival function (complementary CDF) at x.
func (l Laplace) Survival(x float64) float64 {
	if x < l.Mu {
		return 1 - 0.5*math.Exp((x-l.Mu)/l.Scale)
	}
	return 0.5 * math.Exp(-(x-l.Mu)/l.Scale)
}

// setParameters modifies the parameters of the distribution.
func (l *Laplace) setParameters(p []Parameter) {
	if len(p) != l.NumParameters() {
		panic(badLength)
	}
	if p[0].Name != "Mu" {
		panic("laplace: " + panicNameMismatch)
	}
	if p[1].Name != "Scale" {
		panic("laplace: " + panicNameMismatch)
	}
	l.Mu = p[0].Value
	l.Scale = p[1].Value
}

// Variance returns the variance of the probability distribution.
func (l Laplace) Variance() float64 {
	return 2 * l.Scale * l.Scale
}