aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/gonum.org/v1/gonum/stat/distuv/binomial.go
blob: a7e6737728e1d4e780410cbbf0900ccc16672827 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
// Copyright ©2018 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package distuv

import (
	"math"

	"golang.org/x/exp/rand"

	"gonum.org/v1/gonum/mathext"
	"gonum.org/v1/gonum/stat/combin"
)

// Binomial implements the binomial distribution, a discrete probability distribution
// that expresses the probability of a given number of successful Bernoulli trials
// out of a total of n, each with success probability p.
// The binomial distribution has the density function:
//
//	f(k) = (n choose k) p^k (1-p)^(n-k)
//
// For more information, see https://en.wikipedia.org/wiki/Binomial_distribution.
type Binomial struct {
	// N is the total number of Bernoulli trials. N must be greater than 0.
	N float64
	// P is the probability of success in any given trial. P must be in [0, 1].
	P float64

	Src rand.Source
}

// CDF computes the value of the cumulative distribution function at x.
func (b Binomial) CDF(x float64) float64 {
	if x < 0 {
		return 0
	}
	if x >= b.N {
		return 1
	}
	x = math.Floor(x)
	return mathext.RegIncBeta(b.N-x, x+1, 1-b.P)
}

// ExKurtosis returns the excess kurtosis of the distribution.
func (b Binomial) ExKurtosis() float64 {
	v := b.P * (1 - b.P)
	return (1 - 6*v) / (b.N * v)
}

// LogProb computes the natural logarithm of the value of the probability
// density function at x.
func (b Binomial) LogProb(x float64) float64 {
	if x < 0 || x > b.N || math.Floor(x) != x {
		return math.Inf(-1)
	}
	lb := combin.LogGeneralizedBinomial(b.N, x)
	return lb + x*math.Log(b.P) + (b.N-x)*math.Log(1-b.P)
}

// Mean returns the mean of the probability distribution.
func (b Binomial) Mean() float64 {
	return b.N * b.P
}

// NumParameters returns the number of parameters in the distribution.
func (Binomial) NumParameters() int {
	return 2
}

// Prob computes the value of the probability density function at x.
func (b Binomial) Prob(x float64) float64 {
	return math.Exp(b.LogProb(x))
}

// Rand returns a random sample drawn from the distribution.
func (b Binomial) Rand() float64 {
	// NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5)
	// p. 295-6
	// http://www.aip.de/groups/soe/local/numres/bookcpdf/c7-3.pdf

	runif := rand.Float64
	rexp := rand.ExpFloat64
	if b.Src != nil {
		rnd := rand.New(b.Src)
		runif = rnd.Float64
		rexp = rnd.ExpFloat64
	}

	p := b.P
	if p > 0.5 {
		p = 1 - p
	}
	am := b.N * p

	if b.N < 25 {
		// Use direct method.
		bnl := 0.0
		for i := 0; i < int(b.N); i++ {
			if runif() < p {
				bnl++
			}
		}
		if p != b.P {
			return b.N - bnl
		}
		return bnl
	}

	if am < 1 {
		// Use rejection method with Poisson proposal.
		const logM = 2.6e-2 // constant for rejection sampling (https://en.wikipedia.org/wiki/Rejection_sampling)
		var bnl float64
		z := -p
		pclog := (1 + 0.5*z) * z / (1 + (1+1.0/6*z)*z) // Padé approximant of log(1 + x)
		for {
			bnl = 0.0
			t := 0.0
			for i := 0; i < int(b.N); i++ {
				t += rexp()
				if t >= am {
					break
				}
				bnl++
			}
			bnlc := b.N - bnl
			z = -bnl / b.N
			log1p := (1 + 0.5*z) * z / (1 + (1+1.0/6*z)*z)
			t = (bnlc+0.5)*log1p + bnl - bnlc*pclog + 1/(12*bnlc) - am + logM // Uses Stirling's expansion of log(n!)
			if rexp() >= t {
				break
			}
		}
		if p != b.P {
			return b.N - bnl
		}
		return bnl
	}
	// Original algorithm samples from a Poisson distribution with the
	// appropriate expected value. However, the Poisson approximation is
	// asymptotic such that the absolute deviation in probability is O(1/n).
	// Rejection sampling produces exact variates with at worst less than 3%
	// rejection with minimal additional computation.

	// Use rejection method with Cauchy proposal.
	g, _ := math.Lgamma(b.N + 1)
	plog := math.Log(p)
	pclog := math.Log1p(-p)
	sq := math.Sqrt(2 * am * (1 - p))
	for {
		var em, y float64
		for {
			y = math.Tan(math.Pi * runif())
			em = sq*y + am
			if em >= 0 && em < b.N+1 {
				break
			}
		}
		em = math.Floor(em)
		lg1, _ := math.Lgamma(em + 1)
		lg2, _ := math.Lgamma(b.N - em + 1)
		t := 1.2 * sq * (1 + y*y) * math.Exp(g-lg1-lg2+em*plog+(b.N-em)*pclog)
		if runif() <= t {
			if p != b.P {
				return b.N - em
			}
			return em
		}
	}
}

// Skewness returns the skewness of the distribution.
func (b Binomial) Skewness() float64 {
	return (1 - 2*b.P) / b.StdDev()
}

// StdDev returns the standard deviation of the probability distribution.
func (b Binomial) StdDev() float64 {
	return math.Sqrt(b.Variance())
}

// Survival returns the survival function (complementary CDF) at x.
func (b Binomial) Survival(x float64) float64 {
	return 1 - b.CDF(x)
}

// Variance returns the variance of the probability distribution.
func (b Binomial) Variance() float64 {
	return b.N * b.P * (1 - b.P)
}