blob: d23335d960c4725cba1d98ba78a1829cfdb47b71 (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
|
// Copyright ©2020 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package distuv
import (
"math"
"golang.org/x/exp/rand"
)
// AlphaStable represents an α-stable distribution with four parameters.
// See https://en.wikipedia.org/wiki/Stable_distribution for more information.
type AlphaStable struct {
// Alpha is the stability parameter.
// It is valid within the range 0 < α ≤ 2.
Alpha float64
// Beta is the skewness parameter.
// It is valid within the range -1 ≤ β ≤ 1.
Beta float64
// C is the scale parameter.
// It is valid when positive.
C float64
// Mu is the location parameter.
Mu float64
Src rand.Source
}
// ExKurtosis returns the excess kurtosis of the distribution.
// ExKurtosis returns NaN when Alpha != 2.
func (a AlphaStable) ExKurtosis() float64 {
if a.Alpha == 2 {
return 0
}
return math.NaN()
}
// Mean returns the mean of the probability distribution.
// Mean returns NaN when Alpha <= 1.
func (a AlphaStable) Mean() float64 {
if a.Alpha > 1 {
return a.Mu
}
return math.NaN()
}
// Median returns the median of the distribution.
// Median panics when Beta != 0, because then the mode is not analytically
// expressible.
func (a AlphaStable) Median() float64 {
if a.Beta == 0 {
return a.Mu
}
panic("distuv: cannot compute Median for Beta != 0")
}
// Mode returns the mode of the distribution.
// Mode panics when Beta != 0, because then the mode is not analytically
// expressible.
func (a AlphaStable) Mode() float64 {
if a.Beta == 0 {
return a.Mu
}
panic("distuv: cannot compute Mode for Beta != 0")
}
// NumParameters returns the number of parameters in the distribution.
func (a AlphaStable) NumParameters() int {
return 4
}
// Rand returns a random sample drawn from the distribution.
func (a AlphaStable) Rand() float64 {
// From https://en.wikipedia.org/wiki/Stable_distribution#Simulation_of_stable_variables
const halfPi = math.Pi / 2
u := Uniform{-halfPi, halfPi, a.Src}.Rand()
w := Exponential{1, a.Src}.Rand()
if a.Alpha == 1 {
f := halfPi + a.Beta*u
x := (f*math.Tan(u) - a.Beta*math.Log(halfPi*w*math.Cos(u)/f)) / halfPi
return a.C*(x+a.Beta*math.Log(a.C)/halfPi) + a.Mu
}
zeta := -a.Beta * math.Tan(halfPi*a.Alpha)
xi := math.Atan(-zeta) / a.Alpha
f := a.Alpha * (u + xi)
g := math.Sqrt(1+zeta*zeta) * math.Pow(math.Cos(u-f)/w, 1-a.Alpha) / math.Cos(u)
x := math.Pow(g, 1/a.Alpha) * math.Sin(f)
return a.C*x + a.Mu
}
// Skewness returns the skewness of the distribution.
// Skewness returns NaN when Alpha != 2.
func (a AlphaStable) Skewness() float64 {
if a.Alpha == 2 {
return 0
}
return math.NaN()
}
// StdDev returns the standard deviation of the probability distribution.
func (a AlphaStable) StdDev() float64 {
return math.Sqrt(a.Variance())
}
// Variance returns the variance of the probability distribution.
// Variance returns +Inf when Alpha != 2.
func (a AlphaStable) Variance() float64 {
if a.Alpha == 2 {
return 2 * a.C * a.C
}
return math.Inf(1)
}
|