1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
|
// Derived from SciPy's special/cephes/unity.c
// https://github.com/scipy/scipy/blob/master/scipy/special/cephes/unity.c
// Made freely available by Stephen L. Moshier without support or guarantee.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Copyright ©1984, ©1996 by Stephen L. Moshier
// Portions Copyright ©2016 The Gonum Authors. All rights reserved.
package cephes
import "math"
// Relative error approximations for function arguments near unity.
// log1p(x) = log(1+x)
// expm1(x) = exp(x) - 1
// cosm1(x) = cos(x) - 1
// lgam1p(x) = lgam(1+x)
const (
invSqrt2 = 1 / math.Sqrt2
pi4 = math.Pi / 4
euler = 0.577215664901532860606512090082402431 // Euler constant
)
// Coefficients for
//
// log(1+x) = x - \frac{x^2}{2} + \frac{x^3 lP(x)}{lQ(x)}
//
// for
//
// \frac{1}{\sqrt{2}} <= x < \sqrt{2}
//
// Theoretical peak relative error = 2.32e-20
var lP = [...]float64{
4.5270000862445199635215e-5,
4.9854102823193375972212e-1,
6.5787325942061044846969e0,
2.9911919328553073277375e1,
6.0949667980987787057556e1,
5.7112963590585538103336e1,
2.0039553499201281259648e1,
}
var lQ = [...]float64{
1.5062909083469192043167e1,
8.3047565967967209469434e1,
2.2176239823732856465394e2,
3.0909872225312059774938e2,
2.1642788614495947685003e2,
6.0118660497603843919306e1,
}
// log1p computes
//
// log(1 + x)
func log1p(x float64) float64 {
z := 1 + x
if z < invSqrt2 || z > math.Sqrt2 {
return math.Log(z)
}
z = x * x
z = -0.5*z + x*(z*polevl(x, lP[:], 6)/p1evl(x, lQ[:], 6))
return x + z
}
// log1pmx computes
//
// log(1 + x) - x
func log1pmx(x float64) float64 {
if math.Abs(x) < 0.5 {
xfac := x
res := 0.0
var term float64
for n := 2; n < maxIter; n++ {
xfac *= -x
term = xfac / float64(n)
res += term
if math.Abs(term) < machEp*math.Abs(res) {
break
}
}
return res
}
return log1p(x) - x
}
// Coefficients for
//
// e^x = 1 + \frac{2x eP(x^2)}{eQ(x^2) - eP(x^2)}
//
// for
//
// -0.5 <= x <= 0.5
var eP = [...]float64{
1.2617719307481059087798e-4,
3.0299440770744196129956e-2,
9.9999999999999999991025e-1,
}
var eQ = [...]float64{
3.0019850513866445504159e-6,
2.5244834034968410419224e-3,
2.2726554820815502876593e-1,
2.0000000000000000000897e0,
}
// expm1 computes
//
// expm1(x) = e^x - 1
func expm1(x float64) float64 {
if math.IsInf(x, 0) {
if math.IsNaN(x) || x > 0 {
return x
}
return -1
}
if x < -0.5 || x > 0.5 {
return math.Exp(x) - 1
}
xx := x * x
r := x * polevl(xx, eP[:], 2)
r = r / (polevl(xx, eQ[:], 3) - r)
return r + r
}
var coscof = [...]float64{
4.7377507964246204691685e-14,
-1.1470284843425359765671e-11,
2.0876754287081521758361e-9,
-2.7557319214999787979814e-7,
2.4801587301570552304991e-5,
-1.3888888888888872993737e-3,
4.1666666666666666609054e-2,
}
// cosm1 computes
//
// cosm1(x) = cos(x) - 1
func cosm1(x float64) float64 {
if x < -pi4 || x > pi4 {
return math.Cos(x) - 1
}
xx := x * x
xx = -0.5*xx + xx*xx*polevl(xx, coscof[:], 6)
return xx
}
// lgam1pTayler computes
//
// lgam(x + 1)
//
// around x = 0 using its Taylor series.
func lgam1pTaylor(x float64) float64 {
if x == 0 {
return 0
}
res := -euler * x
xfac := -x
for n := 2; n < 42; n++ {
nf := float64(n)
xfac *= -x
coeff := Zeta(nf, 1) * xfac / nf
res += coeff
if math.Abs(coeff) < machEp*math.Abs(res) {
break
}
}
return res
}
// lgam1p computes
//
// lgam(x + 1)
func lgam1p(x float64) float64 {
if math.Abs(x) <= 0.5 {
return lgam1pTaylor(x)
} else if math.Abs(x-1) < 0.5 {
return math.Log(x) + lgam1pTaylor(x-1)
}
return lgam(x + 1)
}
|