1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
* Cephes Math Library Release 2.1: January, 1989
* Copyright 1984, 1987, 1989 by Stephen L. Moshier
* Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
package cephes
import "math"
// TODO(btracey): There is currently an implementation of this functionality
// in gonum/stat/distuv. Find out which implementation is better, and rectify
// by having distuv call this, or moving this implementation into
// gonum/mathext/internal/gonum.
// math.Sqrt(2*pi)
const s2pi = 2.50662827463100050242e0
// approximation for 0 <= |y - 0.5| <= 3/8
var P0 = [5]float64{
-5.99633501014107895267e1,
9.80010754185999661536e1,
-5.66762857469070293439e1,
1.39312609387279679503e1,
-1.23916583867381258016e0,
}
var Q0 = [8]float64{
/* 1.00000000000000000000E0, */
1.95448858338141759834e0,
4.67627912898881538453e0,
8.63602421390890590575e1,
-2.25462687854119370527e2,
2.00260212380060660359e2,
-8.20372256168333339912e1,
1.59056225126211695515e1,
-1.18331621121330003142e0,
}
// Approximation for interval z = math.Sqrt(-2 log y ) between 2 and 8
// i.e., y between exp(-2) = .135 and exp(-32) = 1.27e-14.
var P1 = [9]float64{
4.05544892305962419923e0,
3.15251094599893866154e1,
5.71628192246421288162e1,
4.40805073893200834700e1,
1.46849561928858024014e1,
2.18663306850790267539e0,
-1.40256079171354495875e-1,
-3.50424626827848203418e-2,
-8.57456785154685413611e-4,
}
var Q1 = [8]float64{
/* 1.00000000000000000000E0, */
1.57799883256466749731e1,
4.53907635128879210584e1,
4.13172038254672030440e1,
1.50425385692907503408e1,
2.50464946208309415979e0,
-1.42182922854787788574e-1,
-3.80806407691578277194e-2,
-9.33259480895457427372e-4,
}
// Approximation for interval z = math.Sqrt(-2 log y ) between 8 and 64
// i.e., y between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890.
var P2 = [9]float64{
3.23774891776946035970e0,
6.91522889068984211695e0,
3.93881025292474443415e0,
1.33303460815807542389e0,
2.01485389549179081538e-1,
1.23716634817820021358e-2,
3.01581553508235416007e-4,
2.65806974686737550832e-6,
6.23974539184983293730e-9,
}
var Q2 = [8]float64{
/* 1.00000000000000000000E0, */
6.02427039364742014255e0,
3.67983563856160859403e0,
1.37702099489081330271e0,
2.16236993594496635890e-1,
1.34204006088543189037e-2,
3.28014464682127739104e-4,
2.89247864745380683936e-6,
6.79019408009981274425e-9,
}
// Ndtri returns the argument, x, for which the area under the
// Gaussian probability density function (integrated from
// minus infinity to x) is equal to y.
func Ndtri(y0 float64) float64 {
// For small arguments 0 < y < exp(-2), the program computes
// z = math.Sqrt( -2.0 * math.Log(y) ); then the approximation is
// x = z - math.Log(z)/z - (1/z) P(1/z) / Q(1/z).
// There are two rational functions P/Q, one for 0 < y < exp(-32)
// and the other for y up to exp(-2). For larger arguments,
// w = y - 0.5, and x/math.Sqrt(2pi) = w + w**3 R(w**2)/S(w**2)).
var x, y, z, y2, x0, x1 float64
var code int
if y0 <= 0.0 {
if y0 < 0 {
panic(paramOutOfBounds)
}
return math.Inf(-1)
}
if y0 >= 1.0 {
if y0 > 1 {
panic(paramOutOfBounds)
}
return math.Inf(1)
}
code = 1
y = y0
if y > (1.0 - 0.13533528323661269189) { /* 0.135... = exp(-2) */
y = 1.0 - y
code = 0
}
if y > 0.13533528323661269189 {
y = y - 0.5
y2 = y * y
x = y + y*(y2*polevl(y2, P0[:], 4)/p1evl(y2, Q0[:], 8))
x = x * s2pi
return (x)
}
x = math.Sqrt(-2.0 * math.Log(y))
x0 = x - math.Log(x)/x
z = 1.0 / x
if x < 8.0 { /* y > exp(-32) = 1.2664165549e-14 */
x1 = z * polevl(z, P1[:], 8) / p1evl(z, Q1[:], 8)
} else {
x1 = z * polevl(z, P2[:], 8) / p1evl(z, Q2[:], 8)
}
x = x0 - x1
if code != 0 {
x = -x
}
return (x)
}
|