blob: bb80b9cf8382a1fcea2eac8843e26e0aac2d2bbb (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
|
// Derived from SciPy's special/cephes/igami.c
// https://github.com/scipy/scipy/blob/master/scipy/special/cephes/igami.c
// Made freely available by Stephen L. Moshier without support or guarantee.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Copyright ©1984, ©1987, ©1995 by Stephen L. Moshier
// Portions Copyright ©2017 The Gonum Authors. All rights reserved.
package cephes
import "math"
// IgamI computes the inverse of the incomplete Gamma function. That is, it
// returns the x such that:
//
// IgamC(a, x) = p
//
// The input argument a must be positive and p must be between 0 and 1
// inclusive or IgamI will panic. IgamI should return a positive number, but
// can return 0 even with non-zero y due to underflow.
func IgamI(a, p float64) float64 {
// Bound the solution
x0 := math.MaxFloat64
yl := 0.0
x1 := 0.0
yh := 1.0
dithresh := 5.0 * machEp
if p < 0 || p > 1 || a <= 0 {
panic(paramOutOfBounds)
}
if p == 0 {
return math.Inf(1)
}
if p == 1 {
return 0.0
}
// Starting with the approximate value
// x = a y^3
// where
// y = 1 - d - ndtri(p) sqrt(d)
// and
// d = 1/9a
// the routine performs up to 10 Newton iterations to find the root of
// IgamC(a, x) - p = 0
d := 1.0 / (9.0 * a)
y := 1.0 - d - Ndtri(p)*math.Sqrt(d)
x := a * y * y * y
lgm := lgam(a)
for i := 0; i < 10; i++ {
if x > x0 || x < x1 {
break
}
y = IgamC(a, x)
if y < yl || y > yh {
break
}
if y < p {
x0 = x
yl = y
} else {
x1 = x
yh = y
}
// Compute the derivative of the function at this point
d = (a-1)*math.Log(x) - x - lgm
if d < -maxLog {
break
}
d = -math.Exp(d)
// Compute the step to the next approximation of x
d = (y - p) / d
if math.Abs(d/x) < machEp {
return x
}
x = x - d
}
d = 0.0625
if x0 == math.MaxFloat64 {
if x <= 0 {
x = 1
}
for x0 == math.MaxFloat64 {
x = (1 + d) * x
y = IgamC(a, x)
if y < p {
x0 = x
yl = y
break
}
d = d + d
}
}
d = 0.5
dir := 0
for i := 0; i < 400; i++ {
x = x1 + d*(x0-x1)
y = IgamC(a, x)
lgm = (x0 - x1) / (x1 + x0)
if math.Abs(lgm) < dithresh {
break
}
lgm = (y - p) / p
if math.Abs(lgm) < dithresh {
break
}
if x <= 0 {
break
}
if y >= p {
x1 = x
yh = y
if dir < 0 {
dir = 0
d = 0.5
} else if dir > 1 {
d = 0.5*d + 0.5
} else {
d = (p - yl) / (yh - yl)
}
dir++
} else {
x0 = x
yl = y
if dir > 0 {
dir = 0
d = 0.5
} else if dir < -1 {
d = 0.5 * d
} else {
d = (p - yl) / (yh - yl)
}
dir--
}
}
return x
}
|