1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package amos
import (
"math"
"math/cmplx"
)
/*
The AMOS functions are included in SLATEC, and the SLATEC guide (http://www.netlib.org/slatec/guide) explicitly states:
"The Library is in the public domain and distributed by the Energy
Science and Technology Software Center."
Mention of AMOS's inclusion in SLATEC goes back at least to this 1985 technical report from Sandia National Labs: http://infoserve.sandia.gov/sand_doc/1985/851018.pdf
*/
// math.NaN() are for padding to keep indexing easy.
var imach = []int{-0, 5, 6, 0, 0, 32, 4, 2, 31, 2147483647, 2, 24, -125, 127, 53, -1021, 1023}
var dmach = []float64{math.NaN(), 2.23e-308, 1.79e-308, 1.11e-16, 2.22e-16, 0.30103000998497009}
func abs(a int) int {
if a >= 0 {
return a
}
return -a
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func Zairy(ZR, ZI float64, ID, KODE int) (AIR, AII float64, NZ, IERR int) {
// zairy is adapted from the original Netlib code by Donald Amos.
// http://www.netlib.no/netlib/amos/zairy.f
// Original comment:
/*
C***BEGIN PROLOGUE ZAIRY
C***DATE WRITTEN 830501 (YYMMDD)
C***REVISION DATE 890801 (YYMMDD)
C***CATEGORY NO. B5K
C***KEYWORDS AIRY FUNCTION,BESSEL FUNCTIONS OF ORDER ONE THIRD
C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
C***PURPOSE TO COMPUTE AIRY FUNCTIONS AI(Z) AND DAI(Z) FOR COMPLEX Z
C***DESCRIPTION
C
C ***A DOUBLE PRECISION ROUTINE***
C ON KODE=1, ZAIRY COMPUTES THE COMPLEX AIRY FUNCTION AI(Z) OR
C ITS DERIVATIVE DAI(Z)/DZ ON ID=0 OR ID=1 RESPECTIVELY. ON
C KODE=2, A SCALING OPTION CEXP(ZTA)*AI(Z) OR CEXP(ZTA)*
C DAI(Z)/DZ IS PROVIDED TO REMOVE THE EXPONENTIAL DECAY IN
C -PI/3<ARG(Z)<PI/3 AND THE EXPONENTIAL GROWTH IN
C PI/3<ABS(ARG(Z))<PI WHERE ZTA=(2/3)*Z*CSQRT(Z).
C
C WHILE THE AIRY FUNCTIONS AI(Z) AND DAI(Z)/DZ ARE ANALYTIC IN
C THE WHOLE Z PLANE, THE CORRESPONDING SCALED FUNCTIONS DEFINED
C FOR KODE=2 HAVE A CUT ALONG THE NEGATIVE REAL AXIS.
C DEFINTIONS AND NOTATION ARE FOUND IN THE NBS HANDBOOK OF
C MATHEMATICAL FUNCTIONS (REF. 1).
C
C INPUT ZR,ZI ARE DOUBLE PRECISION
C ZR,ZI - Z=CMPLX(ZR,ZI)
C ID - ORDER OF DERIVATIVE, ID=0 OR ID=1
C KODE - A PARAMETER TO INDICATE THE SCALING OPTION
C KODE= 1 returnS
C AI=AI(Z) ON ID=0 OR
C AI=DAI(Z)/DZ ON ID=1
C = 2 returnS
C AI=CEXP(ZTA)*AI(Z) ON ID=0 OR
C AI=CEXP(ZTA)*DAI(Z)/DZ ON ID=1 WHERE
C ZTA=(2/3)*Z*CSQRT(Z)
C
C OUTPUT AIR,AII ARE DOUBLE PRECISION
C AIR,AII- COMPLEX ANSWER DEPENDING ON THE CHOICES FOR ID AND
C KODE
C NZ - UNDERFLOW INDICATOR
C NZ= 0 , NORMAL return
C NZ= 1 , AI=CMPLX(0.0E0,0.0E0) DUE TO UNDERFLOW IN
C -PI/3<ARG(Z)<PI/3 ON KODE=1
C IERR - ERROR FLAG
C IERR=0, NORMAL return - COMPUTATION COMPLETED
C IERR=1, INPUT ERROR - NO COMPUTATION
C IERR=2, OVERFLOW - NO COMPUTATION, REAL(ZTA)
C TOO LARGE ON KODE=1
C IERR=3, CABS(Z) LARGE - COMPUTATION COMPLETED
C LOSSES OF SIGNIFCANCE BY ARGUMENT REDUCTION
C PRODUCE LESS THAN HALF OF MACHINE ACCURACY
C IERR=4, CABS(Z) TOO LARGE - NO COMPUTATION
C COMPLETE LOSS OF ACCURACY BY ARGUMENT
C REDUCTION
C IERR=5, ERROR - NO COMPUTATION,
C ALGORITHM TERMINATION CONDITION NOT MET
C
C***LONG DESCRIPTION
C
C AI AND DAI ARE COMPUTED FOR CABS(Z)>1.0 FROM THE K BESSEL
C FUNCTIONS BY
C
C AI(Z)=C*SQRT(Z)*K(1/3,ZTA) , DAI(Z)=-C*Z*K(2/3,ZTA)
C C=1.0/(PI*SQRT(3.0))
C ZTA=(2/3)*Z**(3/2)
C
C WITH THE POWER SERIES FOR CABS(Z)<=1.0.
C
C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z IS LARGE, LOSSES
C OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR. CONSEQUENTLY, IF
C THE MAGNITUDE OF ZETA=(2/3)*Z**1.5 EXCEEDS U1=SQRT(0.5/UR),
C THEN LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR
C FLAG IERR=3 IS TRIGGERED WHERE UR=math.Max(dmach[4),1.0D-18) IS
C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
C ALSO, if THE MAGNITUDE OF ZETA IS LARGER THAN U2=0.5/UR, THEN
C ALL SIGNIFICANCE IS LOST AND IERR=4. IN ORDER TO USE THE INT
C FUNCTION, ZETA MUST BE FURTHER RESTRICTED NOT TO EXCEED THE
C LARGEST INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF ZETA
C MUST BE RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2,
C AND U3 ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE
C PRECISION ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE
C PRECISION ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMIT-
C ING IN THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT THE MAG-
C NITUDE OF Z CANNOT EXCEED 3.1E+4 IN SINGLE AND 2.1E+6 IN
C DOUBLE PRECISION ARITHMETIC. THIS ALSO MEANS THAT ONE CAN
C EXPECT TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES,
C NO DIGITS IN SINGLE PRECISION AND ONLY 7 DIGITS IN DOUBLE
C PRECISION ARITHMETIC. SIMILAR CONSIDERATIONS HOLD FOR OTHER
C MACHINES.
C
C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
C ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
C SEVERAL ORDERS OF MAGNITUDE. if ONE COMPONENT IS 10**K LARGER
C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
C OR -PI/2+P.
C
C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
C COMMERCE, 1955.
C
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
C
C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
C 1018, MAY, 1985
C
C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
C MATH. SOFTWARE, 1986
*/
var AI, CONE, CSQ, CY, S1, S2, TRM1, TRM2, Z, ZTA, Z3 complex128
var AA, AD, AK, ALIM, ATRM, AZ, AZ3, BK,
CC, CK, COEF, CONEI, CONER, CSQI, CSQR, C1, C2, DIG,
DK, D1, D2, ELIM, FID, FNU, PTR, RL, R1M5, SFAC, STI, STR,
S1I, S1R, S2I, S2R, TOL, TRM1I, TRM1R, TRM2I, TRM2R, TTH, ZEROI,
ZEROR, ZTAI, ZTAR, Z3I, Z3R, ALAZ, BB float64
var IFLAG, K, K1, K2, MR, NN int
var tmp complex128
// Extra element for padding.
CYR := []float64{math.NaN(), 0}
CYI := []float64{math.NaN(), 0}
_ = AI
_ = CONE
_ = CSQ
_ = CY
_ = S1
_ = S2
_ = TRM1
_ = TRM2
_ = Z
_ = ZTA
_ = Z3
TTH = 6.66666666666666667e-01
C1 = 3.55028053887817240e-01
C2 = 2.58819403792806799e-01
COEF = 1.83776298473930683e-01
ZEROR = 0
ZEROI = 0
CONER = 1
CONEI = 0
NZ = 0
if ID < 0 || ID > 1 {
IERR = 1
}
if KODE < 1 || KODE > 2 {
IERR = 1
}
if IERR != 0 {
return
}
AZ = cmplx.Abs(complex(ZR, ZI))
TOL = math.Max(dmach[4], 1.0e-18)
FID = float64(ID)
if AZ > 1.0e0 {
goto Seventy
}
// POWER SERIES FOR CABS(Z)<=1.
S1R = CONER
S1I = CONEI
S2R = CONER
S2I = CONEI
if AZ < TOL {
goto OneSeventy
}
AA = AZ * AZ
if AA < TOL/AZ {
goto Forty
}
TRM1R = CONER
TRM1I = CONEI
TRM2R = CONER
TRM2I = CONEI
ATRM = 1.0e0
STR = ZR*ZR - ZI*ZI
STI = ZR*ZI + ZI*ZR
Z3R = STR*ZR - STI*ZI
Z3I = STR*ZI + STI*ZR
AZ3 = AZ * AA
AK = 2.0e0 + FID
BK = 3.0e0 - FID - FID
CK = 4.0e0 - FID
DK = 3.0e0 + FID + FID
D1 = AK * DK
D2 = BK * CK
AD = math.Min(D1, D2)
AK = 24.0e0 + 9.0e0*FID
BK = 30.0e0 - 9.0e0*FID
for K = 1; K <= 25; K++ {
STR = (TRM1R*Z3R - TRM1I*Z3I) / D1
TRM1I = (TRM1R*Z3I + TRM1I*Z3R) / D1
TRM1R = STR
S1R = S1R + TRM1R
S1I = S1I + TRM1I
STR = (TRM2R*Z3R - TRM2I*Z3I) / D2
TRM2I = (TRM2R*Z3I + TRM2I*Z3R) / D2
TRM2R = STR
S2R = S2R + TRM2R
S2I = S2I + TRM2I
ATRM = ATRM * AZ3 / AD
D1 = D1 + AK
D2 = D2 + BK
AD = math.Min(D1, D2)
if ATRM < TOL*AD {
goto Forty
}
AK = AK + 18.0e0
BK = BK + 18.0e0
}
Forty:
if ID == 1 {
goto Fifty
}
AIR = S1R*C1 - C2*(ZR*S2R-ZI*S2I)
AII = S1I*C1 - C2*(ZR*S2I+ZI*S2R)
if KODE == 1 {
return
}
tmp = cmplx.Sqrt(complex(ZR, ZI))
STR = real(tmp)
STI = imag(tmp)
ZTAR = TTH * (ZR*STR - ZI*STI)
ZTAI = TTH * (ZR*STI + ZI*STR)
tmp = cmplx.Exp(complex(ZTAR, ZTAI))
STR = real(tmp)
STI = imag(tmp)
PTR = AIR*STR - AII*STI
AII = AIR*STI + AII*STR
AIR = PTR
return
Fifty:
AIR = -S2R * C2
AII = -S2I * C2
if AZ <= TOL {
goto Sixty
}
STR = ZR*S1R - ZI*S1I
STI = ZR*S1I + ZI*S1R
CC = C1 / (1.0e0 + FID)
AIR = AIR + CC*(STR*ZR-STI*ZI)
AII = AII + CC*(STR*ZI+STI*ZR)
Sixty:
if KODE == 1 {
return
}
tmp = cmplx.Sqrt(complex(ZR, ZI))
STR = real(tmp)
STI = imag(tmp)
ZTAR = TTH * (ZR*STR - ZI*STI)
ZTAI = TTH * (ZR*STI + ZI*STR)
tmp = cmplx.Exp(complex(ZTAR, ZTAI))
STR = real(tmp)
STI = imag(tmp)
PTR = STR*AIR - STI*AII
AII = STR*AII + STI*AIR
AIR = PTR
return
// CASE FOR CABS(Z)>1.0.
Seventy:
FNU = (1.0e0 + FID) / 3.0e0
/*
SET PARAMETERS RELATED TO MACHINE CONSTANTS.
TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0D-18.
ELIM IS THE APPROXIMATE EXPONENTIAL OVER-&&UNDERFLOW LIMIT.
EXP(-ELIM)<EXP(-ALIM)=EXP(-ELIM)/TOL AND
EXP(ELIM)>EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
UNDERFLOW&&OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LA>=Z.
DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
*/
K1 = imach[15]
K2 = imach[16]
R1M5 = dmach[5]
K = min(abs(K1), abs(K2))
ELIM = 2.303e0 * (float64(K)*R1M5 - 3.0e0)
K1 = imach[14] - 1
AA = R1M5 * float64(K1)
DIG = math.Min(AA, 18.0e0)
AA = AA * 2.303e0
ALIM = ELIM + math.Max(-AA, -41.45e0)
RL = 1.2e0*DIG + 3.0e0
ALAZ = math.Log(AZ)
// TEST FOR PROPER RANGE.
AA = 0.5e0 / TOL
BB = float64(float32(imach[9])) * 0.5e0
AA = math.Min(AA, BB)
AA = math.Pow(AA, TTH)
if AZ > AA {
goto TwoSixty
}
AA = math.Sqrt(AA)
if AZ > AA {
IERR = 3
}
tmp = cmplx.Sqrt(complex(ZR, ZI))
CSQR = real(tmp)
CSQI = imag(tmp)
ZTAR = TTH * (ZR*CSQR - ZI*CSQI)
ZTAI = TTH * (ZR*CSQI + ZI*CSQR)
// RE(ZTA)<=0 WHEN RE(Z)<0, ESPECIALLY WHEN IM(Z) IS SMALL.
IFLAG = 0
SFAC = 1.0e0
AK = ZTAI
if ZR >= 0.0e0 {
goto Eighty
}
BK = ZTAR
CK = -math.Abs(BK)
ZTAR = CK
ZTAI = AK
Eighty:
if ZI != 0.0e0 {
goto Ninety
}
if ZR > 0.0e0 {
goto Ninety
}
ZTAR = 0.0e0
ZTAI = AK
Ninety:
AA = ZTAR
if AA >= 0.0e0 && ZR > 0.0e0 {
goto OneTen
}
if KODE == 2 {
goto OneHundred
}
// OVERFLOW TEST.
if AA > (-ALIM) {
goto OneHundred
}
AA = -AA + 0.25e0*ALAZ
IFLAG = 1
SFAC = TOL
if AA > ELIM {
goto TwoSeventy
}
OneHundred:
// CBKNU AND CACON return EXP(ZTA)*K(FNU,ZTA) ON KODE=2.
MR = 1
if ZI < 0.0e0 {
MR = -1
}
_, _, _, _, _, _, CYR, CYI, NN, _, _, _, _ = Zacai(ZTAR, ZTAI, FNU, KODE, MR, 1, CYR, CYI, RL, TOL, ELIM, ALIM)
if NN < 0 {
goto TwoEighty
}
NZ = NZ + NN
goto OneThirty
OneTen:
if KODE == 2 {
goto OneTwenty
}
// UNDERFLOW TEST.
if AA < ALIM {
goto OneTwenty
}
AA = -AA - 0.25e0*ALAZ
IFLAG = 2
SFAC = 1.0e0 / TOL
if AA < (-ELIM) {
goto TwoTen
}
OneTwenty:
_, _, _, _, _, CYR, CYI, NZ, _, _, _ = Zbknu(ZTAR, ZTAI, FNU, KODE, 1, CYR, CYI, TOL, ELIM, ALIM)
OneThirty:
S1R = CYR[1] * COEF
S1I = CYI[1] * COEF
if IFLAG != 0 {
goto OneFifty
}
if ID == 1 {
goto OneFourty
}
AIR = CSQR*S1R - CSQI*S1I
AII = CSQR*S1I + CSQI*S1R
return
OneFourty:
AIR = -(ZR*S1R - ZI*S1I)
AII = -(ZR*S1I + ZI*S1R)
return
OneFifty:
S1R = S1R * SFAC
S1I = S1I * SFAC
if ID == 1 {
goto OneSixty
}
STR = S1R*CSQR - S1I*CSQI
S1I = S1R*CSQI + S1I*CSQR
S1R = STR
AIR = S1R / SFAC
AII = S1I / SFAC
return
OneSixty:
STR = -(S1R*ZR - S1I*ZI)
S1I = -(S1R*ZI + S1I*ZR)
S1R = STR
AIR = S1R / SFAC
AII = S1I / SFAC
return
OneSeventy:
AA = 1.0e+3 * dmach[1]
S1R = ZEROR
S1I = ZEROI
if ID == 1 {
goto OneNinety
}
if AZ <= AA {
goto OneEighty
}
S1R = C2 * ZR
S1I = C2 * ZI
OneEighty:
AIR = C1 - S1R
AII = -S1I
return
OneNinety:
AIR = -C2
AII = 0.0e0
AA = math.Sqrt(AA)
if AZ <= AA {
goto TwoHundred
}
S1R = 0.5e0 * (ZR*ZR - ZI*ZI)
S1I = ZR * ZI
TwoHundred:
AIR = AIR + C1*S1R
AII = AII + C1*S1I
return
TwoTen:
NZ = 1
AIR = ZEROR
AII = ZEROI
return
TwoSeventy:
NZ = 0
IERR = 2
return
TwoEighty:
if NN == (-1) {
goto TwoSeventy
}
NZ = 0
IERR = 5
return
TwoSixty:
IERR = 4
NZ = 0
return
}
// sbknu computes the k bessel function in the right half z plane.
func Zbknu(ZR, ZI, FNU float64, KODE, N int, YR, YI []float64, TOL, ELIM, ALIM float64) (ZRout, ZIout, FNUout float64, KODEout, Nout int, YRout, YIout []float64, NZ int, TOLout, ELIMout, ALIMout float64) {
/* Old dimension comment.
DIMENSION YR(N), YI(N), CC(8), CSSR(3), CSRR(3), BRY(3), CYR(2),
* CYI(2)
*/
// TODO(btracey): Find which of these are inputs/outputs/both and clean up
// the function call.
// YR and YI have length n (but n+1 with better indexing)
var AA, AK, ASCLE, A1, A2, BB, BK, CAZ,
CBI, CBR, CCHI, CCHR, CKI, CKR, COEFI, COEFR, CONEI, CONER,
CRSCR, CSCLR, CSHI, CSHR, CSI, CSR, CTWOR,
CZEROI, CZEROR, CZI, CZR, DNU, DNU2, DPI, ETEST, FC, FHS,
FI, FK, FKS, FMUI, FMUR, FPI, FR, G1, G2, HPI, PI, PR, PTI,
PTR, P1I, P1R, P2I, P2M, P2R, QI, QR, RAK, RCAZ, RTHPI, RZI,
RZR, R1, S, SMUI, SMUR, SPI, STI, STR, S1I, S1R, S2I, S2R, TM,
TTH, T1, T2, ELM, CELMR, ZDR, ZDI, AS, ALAS, HELIM float64
var I, IFLAG, INU, K, KFLAG, KK, KMAX, KODED, IDUM, J, IC, INUB, NW int
var sinh, cosh complex128
//var sin, cos float64
var tmp, p complex128
var CSSR, CSRR, BRY [4]float64
var CYR, CYI [3]float64
KMAX = 30
CZEROR = 0
CZEROI = 0
CONER = 1
CONEI = 0
CTWOR = 2
R1 = 2
DPI = 3.14159265358979324e0
RTHPI = 1.25331413731550025e0
SPI = 1.90985931710274403e0
HPI = 1.57079632679489662e0
FPI = 1.89769999331517738e0
TTH = 6.66666666666666666e-01
CC := [9]float64{math.NaN(), 5.77215664901532861e-01, -4.20026350340952355e-02,
-4.21977345555443367e-02, 7.21894324666309954e-03,
-2.15241674114950973e-04, -2.01348547807882387e-05,
1.13302723198169588e-06, 6.11609510448141582e-09}
CAZ = cmplx.Abs(complex(ZR, ZI))
CSCLR = 1.0e0 / TOL
CRSCR = TOL
CSSR[1] = CSCLR
CSSR[2] = 1.0e0
CSSR[3] = CRSCR
CSRR[1] = CRSCR
CSRR[2] = 1.0e0
CSRR[3] = CSCLR
BRY[1] = 1.0e+3 * dmach[1] / TOL
BRY[2] = 1.0e0 / BRY[1]
BRY[3] = dmach[2]
IFLAG = 0
KODED = KODE
RCAZ = 1.0e0 / CAZ
STR = ZR * RCAZ
STI = -ZI * RCAZ
RZR = (STR + STR) * RCAZ
RZI = (STI + STI) * RCAZ
INU = int(float32(FNU + 0.5))
DNU = FNU - float64(INU)
if math.Abs(DNU) == 0.5e0 {
goto OneTen
}
DNU2 = 0.0e0
if math.Abs(DNU) > TOL {
DNU2 = DNU * DNU
}
if CAZ > R1 {
goto OneTen
}
// SERIES FOR CABS(Z)<=R1.
FC = 1.0e0
tmp = cmplx.Log(complex(RZR, RZI))
SMUR = real(tmp)
SMUI = imag(tmp)
FMUR = SMUR * DNU
FMUI = SMUI * DNU
tmp = complex(FMUR, FMUI)
sinh = cmplx.Sinh(tmp)
cosh = cmplx.Cosh(tmp)
CSHR = real(sinh)
CSHI = imag(sinh)
CCHR = real(cosh)
CCHI = imag(cosh)
if DNU == 0.0e0 {
goto Ten
}
FC = DNU * DPI
FC = FC / math.Sin(FC)
SMUR = CSHR / DNU
SMUI = CSHI / DNU
Ten:
A2 = 1.0e0 + DNU
// GAM(1-Z)*GAM(1+Z)=PI*Z/SIN(PI*Z), T1=1/GAM(1-DNU), T2=1/GAM(1+DNU).
T2 = math.Exp(-dgamln(A2, IDUM))
T1 = 1.0e0 / (T2 * FC)
if math.Abs(DNU) > 0.1e0 {
goto Forty
}
// SERIES FOR F0 TO RESOLVE INDETERMINACY FOR SMALL ABS(DNU).
AK = 1.0e0
S = CC[1]
for K = 2; K <= 8; K++ {
AK = AK * DNU2
TM = CC[K] * AK
S = S + TM
if math.Abs(TM) < TOL {
goto Thirty
}
}
Thirty:
G1 = -S
goto Fifty
Forty:
G1 = (T1 - T2) / (DNU + DNU)
Fifty:
G2 = (T1 + T2) * 0.5e0
FR = FC * (CCHR*G1 + SMUR*G2)
FI = FC * (CCHI*G1 + SMUI*G2)
tmp = cmplx.Exp(complex(FMUR, FMUI))
STR = real(tmp)
STI = imag(tmp)
PR = 0.5e0 * STR / T2
PI = 0.5e0 * STI / T2
tmp = complex(0.5, 0) / complex(STR, STI)
PTR = real(tmp)
PTI = imag(tmp)
QR = PTR / T1
QI = PTI / T1
S1R = FR
S1I = FI
S2R = PR
S2I = PI
AK = 1.0e0
A1 = 1.0e0
CKR = CONER
CKI = CONEI
BK = 1.0e0 - DNU2
if INU > 0 || N > 1 {
goto Eighty
}
// GENERATE K(FNU,Z), 0.0E0 <= FNU < 0.5E0 AND N=1.
if CAZ < TOL {
goto Seventy
}
tmp = complex(ZR, ZI) * complex(ZR, ZI)
CZR = real(tmp)
CZI = imag(tmp)
CZR = 0.25e0 * CZR
CZI = 0.25e0 * CZI
T1 = 0.25e0 * CAZ * CAZ
Sixty:
FR = (FR*AK + PR + QR) / BK
FI = (FI*AK + PI + QI) / BK
STR = 1.0e0 / (AK - DNU)
PR = PR * STR
PI = PI * STR
STR = 1.0e0 / (AK + DNU)
QR = QR * STR
QI = QI * STR
STR = CKR*CZR - CKI*CZI
RAK = 1.0e0 / AK
CKI = (CKR*CZI + CKI*CZR) * RAK
CKR = STR * RAK
S1R = CKR*FR - CKI*FI + S1R
S1I = CKR*FI + CKI*FR + S1I
A1 = A1 * T1 * RAK
BK = BK + AK + AK + 1.0e0
AK = AK + 1.0e0
if A1 > TOL {
goto Sixty
}
Seventy:
YR[1] = S1R
YI[1] = S1I
if KODED == 1 {
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL, ELIM, ALIM
}
tmp = cmplx.Exp(complex(ZR, ZI))
STR = real(tmp)
STI = imag(tmp)
tmp = complex(S1R, S1I) * complex(STR, STI)
YR[1] = real(tmp)
YI[1] = imag(tmp)
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL, ELIM, ALIM
// GENERATE K(DNU,Z) AND K(DNU+1,Z) FOR FORWARD RECURRENCE.
Eighty:
if CAZ < TOL {
goto OneHundred
}
tmp = complex(ZR, ZI) * complex(ZR, ZI)
CZR = real(tmp)
CZI = imag(tmp)
CZR = 0.25e0 * CZR
CZI = 0.25e0 * CZI
T1 = 0.25e0 * CAZ * CAZ
Ninety:
FR = (FR*AK + PR + QR) / BK
FI = (FI*AK + PI + QI) / BK
STR = 1.0e0 / (AK - DNU)
PR = PR * STR
PI = PI * STR
STR = 1.0e0 / (AK + DNU)
QR = QR * STR
QI = QI * STR
STR = CKR*CZR - CKI*CZI
RAK = 1.0e0 / AK
CKI = (CKR*CZI + CKI*CZR) * RAK
CKR = STR * RAK
S1R = CKR*FR - CKI*FI + S1R
S1I = CKR*FI + CKI*FR + S1I
STR = PR - FR*AK
STI = PI - FI*AK
S2R = CKR*STR - CKI*STI + S2R
S2I = CKR*STI + CKI*STR + S2I
A1 = A1 * T1 * RAK
BK = BK + AK + AK + 1.0e0
AK = AK + 1.0e0
if A1 > TOL {
goto Ninety
}
OneHundred:
KFLAG = 2
A1 = FNU + 1.0e0
AK = A1 * math.Abs(SMUR)
if AK > ALIM {
KFLAG = 3
}
STR = CSSR[KFLAG]
P2R = S2R * STR
P2I = S2I * STR
tmp = complex(P2R, P2I) * complex(RZR, RZI)
S2R = real(tmp)
S2I = imag(tmp)
S1R = S1R * STR
S1I = S1I * STR
if KODED == 1 {
goto TwoTen
}
tmp = cmplx.Exp(complex(ZR, ZI))
FR = real(tmp)
FI = imag(tmp)
tmp = complex(S1R, S1I) * complex(FR, FI)
S1R = real(tmp)
S1I = imag(tmp)
tmp = complex(S2R, S2I) * complex(FR, FI)
S2R = real(tmp)
S2I = imag(tmp)
goto TwoTen
// IFLAG=0 MEANS NO UNDERFLOW OCCURRED
// IFLAG=1 MEANS AN UNDERFLOW OCCURRED- COMPUTATION PROCEEDS WITH
// KODED=2 AND A TEST FOR ON SCALE VALUES IS MADE DURING FORWARD RECURSION
OneTen:
tmp = cmplx.Sqrt(complex(ZR, ZI))
STR = real(tmp)
STI = imag(tmp)
tmp = complex(RTHPI, CZEROI) / complex(STR, STI)
COEFR = real(tmp)
COEFI = imag(tmp)
KFLAG = 2
if KODED == 2 {
goto OneTwenty
}
if ZR > ALIM {
goto TwoNinety
}
STR = math.Exp(-ZR) * CSSR[KFLAG]
//sin, cos = math.Sincos(ZI)
STI = -STR * math.Sin(ZI)
STR = STR * math.Cos(ZI)
tmp = complex(COEFR, COEFI) * complex(STR, STI)
COEFR = real(tmp)
COEFI = imag(tmp)
OneTwenty:
if math.Abs(DNU) == 0.5e0 {
goto ThreeHundred
}
// MILLER ALGORITHM FOR CABS(Z)>R1.
AK = math.Cos(DPI * DNU)
AK = math.Abs(AK)
if AK == CZEROR {
goto ThreeHundred
}
FHS = math.Abs(0.25e0 - DNU2)
if FHS == CZEROR {
goto ThreeHundred
}
// COMPUTE R2=F(E). if CABS(Z)>=R2, USE FORWARD RECURRENCE TO
// DETERMINE THE BACKWARD INDEX K. R2=F(E) IS A STRAIGHT LINE ON
// 12<=E<=60. E IS COMPUTED FROM 2**(-E)=B**(1-I1MACH(14))=
// TOL WHERE B IS THE BASE OF THE ARITHMETIC.
T1 = float64(imach[14] - 1)
T1 = T1 * dmach[5] * 3.321928094e0
T1 = math.Max(T1, 12.0e0)
T1 = math.Min(T1, 60.0e0)
T2 = TTH*T1 - 6.0e0
if ZR != 0.0e0 {
goto OneThirty
}
T1 = HPI
goto OneFourty
OneThirty:
T1 = math.Atan(ZI / ZR)
T1 = math.Abs(T1)
OneFourty:
if T2 > CAZ {
goto OneSeventy
}
// FORWARD RECURRENCE LOOP WHEN CABS(Z)>=R2.
ETEST = AK / (DPI * CAZ * TOL)
FK = CONER
if ETEST < CONER {
goto OneEighty
}
FKS = CTWOR
CKR = CAZ + CAZ + CTWOR
P1R = CZEROR
P2R = CONER
for I = 1; I <= KMAX; I++ {
AK = FHS / FKS
CBR = CKR / (FK + CONER)
PTR = P2R
P2R = CBR*P2R - P1R*AK
P1R = PTR
CKR = CKR + CTWOR
FKS = FKS + FK + FK + CTWOR
FHS = FHS + FK + FK
FK = FK + CONER
STR = math.Abs(P2R) * FK
if ETEST < STR {
goto OneSixty
}
}
goto ThreeTen
OneSixty:
FK = FK + SPI*T1*math.Sqrt(T2/CAZ)
FHS = math.Abs(0.25 - DNU2)
goto OneEighty
OneSeventy:
// COMPUTE BACKWARD INDEX K FOR CABS(Z)<R2.
A2 = math.Sqrt(CAZ)
AK = FPI * AK / (TOL * math.Sqrt(A2))
AA = 3.0e0 * T1 / (1.0e0 + CAZ)
BB = 14.7e0 * T1 / (28.0e0 + CAZ)
AK = (math.Log(AK) + CAZ*math.Cos(AA)/(1.0e0+0.008e0*CAZ)) / math.Cos(BB)
FK = 0.12125e0*AK*AK/CAZ + 1.5e0
OneEighty:
// BACKWARD RECURRENCE LOOP FOR MILLER ALGORITHM.
K = int(float32(FK))
FK = float64(K)
FKS = FK * FK
P1R = CZEROR
P1I = CZEROI
P2R = TOL
P2I = CZEROI
CSR = P2R
CSI = P2I
for I = 1; I <= K; I++ {
A1 = FKS - FK
AK = (FKS + FK) / (A1 + FHS)
RAK = 2.0e0 / (FK + CONER)
CBR = (FK + ZR) * RAK
CBI = ZI * RAK
PTR = P2R
PTI = P2I
P2R = (PTR*CBR - PTI*CBI - P1R) * AK
P2I = (PTI*CBR + PTR*CBI - P1I) * AK
P1R = PTR
P1I = PTI
CSR = CSR + P2R
CSI = CSI + P2I
FKS = A1 - FK + CONER
FK = FK - CONER
}
// COMPUTE (P2/CS)=(P2/CABS(CS))*(CONJG(CS)/CABS(CS)) FOR BETTER SCALING.
TM = cmplx.Abs(complex(CSR, CSI))
PTR = 1.0e0 / TM
S1R = P2R * PTR
S1I = P2I * PTR
CSR = CSR * PTR
CSI = -CSI * PTR
tmp = complex(COEFR, COEFI) * complex(S1R, S1I)
STR = real(tmp)
STI = imag(tmp)
tmp = complex(STR, STI) * complex(CSR, CSI)
S1R = real(tmp)
S1I = imag(tmp)
if INU > 0 || N > 1 {
goto TwoHundred
}
ZDR = ZR
ZDI = ZI
if IFLAG == 1 {
goto TwoSeventy
}
goto TwoFourty
TwoHundred:
// COMPUTE P1/P2=(P1/CABS(P2)*CONJG(P2)/CABS(P2) FOR SCALING.
TM = cmplx.Abs(complex(P2R, P2I))
PTR = 1.0e0 / TM
P1R = P1R * PTR
P1I = P1I * PTR
P2R = P2R * PTR
P2I = -P2I * PTR
tmp = complex(P1R, P1I) * complex(P2R, P2I)
PTR = real(tmp)
PTI = imag(tmp)
STR = DNU + 0.5e0 - PTR
STI = -PTI
tmp = complex(STR, STI) / complex(ZR, ZI)
STR = real(tmp)
STI = imag(tmp)
STR = STR + 1.0e0
tmp = complex(STR, STI) * complex(S1R, S1I)
S2R = real(tmp)
S2I = imag(tmp)
// FORWARD RECURSION ON THE THREE TERM RECURSION WITH RELATION WITH
// SCALING NEAR EXPONENT EXTREMES ON KFLAG=1 OR KFLAG=3
TwoTen:
STR = DNU + 1.0e0
CKR = STR * RZR
CKI = STR * RZI
if N == 1 {
INU = INU - 1
}
if INU > 0 {
goto TwoTwenty
}
if N > 1 {
goto TwoFifteen
}
S1R = S2R
S1I = S2I
TwoFifteen:
ZDR = ZR
ZDI = ZI
if IFLAG == 1 {
goto TwoSeventy
}
goto TwoFourty
TwoTwenty:
INUB = 1
if IFLAG == 1 {
goto TwoSixtyOne
}
TwoTwentyFive:
P1R = CSRR[KFLAG]
ASCLE = BRY[KFLAG]
for I = INUB; I <= INU; I++ {
STR = S2R
STI = S2I
S2R = CKR*STR - CKI*STI + S1R
S2I = CKR*STI + CKI*STR + S1I
S1R = STR
S1I = STI
CKR = CKR + RZR
CKI = CKI + RZI
if KFLAG >= 3 {
continue
}
P2R = S2R * P1R
P2I = S2I * P1R
STR = math.Abs(P2R)
STI = math.Abs(P2I)
P2M = math.Max(STR, STI)
if P2M <= ASCLE {
continue
}
KFLAG = KFLAG + 1
ASCLE = BRY[KFLAG]
S1R = S1R * P1R
S1I = S1I * P1R
S2R = P2R
S2I = P2I
STR = CSSR[KFLAG]
S1R = S1R * STR
S1I = S1I * STR
S2R = S2R * STR
S2I = S2I * STR
P1R = CSRR[KFLAG]
}
if N != 1 {
goto TwoFourty
}
S1R = S2R
S1I = S2I
TwoFourty:
STR = CSRR[KFLAG]
YR[1] = S1R * STR
YI[1] = S1I * STR
if N == 1 {
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL, ELIM, ALIM
}
YR[2] = S2R * STR
YI[2] = S2I * STR
if N == 2 {
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL, ELIM, ALIM
}
KK = 2
TwoFifty:
KK = KK + 1
if KK > N {
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL, ELIM, ALIM
}
P1R = CSRR[KFLAG]
ASCLE = BRY[KFLAG]
for I = KK; I <= N; I++ {
P2R = S2R
P2I = S2I
S2R = CKR*P2R - CKI*P2I + S1R
S2I = CKI*P2R + CKR*P2I + S1I
S1R = P2R
S1I = P2I
CKR = CKR + RZR
CKI = CKI + RZI
P2R = S2R * P1R
P2I = S2I * P1R
YR[I] = P2R
YI[I] = P2I
if KFLAG >= 3 {
continue
}
STR = math.Abs(P2R)
STI = math.Abs(P2I)
P2M = math.Max(STR, STI)
if P2M <= ASCLE {
continue
}
KFLAG = KFLAG + 1
ASCLE = BRY[KFLAG]
S1R = S1R * P1R
S1I = S1I * P1R
S2R = P2R
S2I = P2I
STR = CSSR[KFLAG]
S1R = S1R * STR
S1I = S1I * STR
S2R = S2R * STR
S2I = S2I * STR
P1R = CSRR[KFLAG]
}
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL, ELIM, ALIM
// IFLAG=1 CASES, FORWARD RECURRENCE ON SCALED VALUES ON UNDERFLOW.
TwoSixtyOne:
HELIM = 0.5e0 * ELIM
ELM = math.Exp(-ELIM)
CELMR = ELM
ASCLE = BRY[1]
ZDR = ZR
ZDI = ZI
IC = -1
J = 2
for I = 1; I <= INU; I++ {
STR = S2R
STI = S2I
S2R = STR*CKR - STI*CKI + S1R
S2I = STI*CKR + STR*CKI + S1I
S1R = STR
S1I = STI
CKR = CKR + RZR
CKI = CKI + RZI
AS = cmplx.Abs(complex(S2R, S2I))
ALAS = math.Log(AS)
P2R = -ZDR + ALAS
if P2R < (-ELIM) {
goto TwoSixtyThree
}
tmp = cmplx.Log(complex(S2R, S2I))
STR = real(tmp)
STI = imag(tmp)
P2R = -ZDR + STR
P2I = -ZDI + STI
P2M = math.Exp(P2R) / TOL
// sin, cos = math.Sincos(P2I)
P1R = P2M * math.Cos(P2I)
P1I = P2M * math.Sin(P2I)
p = complex(P1R, P1I)
NW = Zuchk(p, ASCLE, TOL)
if NW != 0 {
goto TwoSixtyThree
}
J = 3 - J
CYR[J] = P1R
CYI[J] = P1I
if IC == (I - 1) {
goto TwoSixtyFour
}
IC = I
continue
TwoSixtyThree:
if ALAS < HELIM {
continue
}
ZDR = ZDR - ELIM
S1R = S1R * CELMR
S1I = S1I * CELMR
S2R = S2R * CELMR
S2I = S2I * CELMR
}
if N != 1 {
goto TwoSeventy
}
S1R = S2R
S1I = S2I
goto TwoSeventy
TwoSixtyFour:
KFLAG = 1
INUB = I + 1
S2R = CYR[J]
S2I = CYI[J]
J = 3 - J
S1R = CYR[J]
S1I = CYI[J]
if INUB <= INU {
goto TwoTwentyFive
}
if N != 1 {
goto TwoFourty
}
S1R = S2R
S1I = S2I
goto TwoFourty
TwoSeventy:
YR[1] = S1R
YI[1] = S1I
if N == 1 {
goto TwoEighty
}
YR[2] = S2R
YI[2] = S2I
TwoEighty:
ASCLE = BRY[1]
_, _, FNU, N, YR, YI, NZ, RZR, RZI, _, TOL, ELIM = Zkscl(ZDR, ZDI, FNU, N, YR, YI, RZR, RZI, ASCLE, TOL, ELIM)
INU = N - NZ
if INU <= 0 {
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL, ELIM, ALIM
}
KK = NZ + 1
S1R = YR[KK]
S1I = YI[KK]
YR[KK] = S1R * CSRR[1]
YI[KK] = S1I * CSRR[1]
if INU == 1 {
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL, ELIM, ALIM
}
KK = NZ + 2
S2R = YR[KK]
S2I = YI[KK]
YR[KK] = S2R * CSRR[1]
YI[KK] = S2I * CSRR[1]
if INU == 2 {
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL, ELIM, ALIM
}
T2 = FNU + float64(float32(KK-1))
CKR = T2 * RZR
CKI = T2 * RZI
KFLAG = 1
goto TwoFifty
TwoNinety:
// SCALE BY math.Exp(Z), IFLAG = 1 CASES.
IFLAG = 1
KFLAG = 2
goto OneTwenty
// FNU=HALF ODD INTEGER CASE, DNU=-0.5
ThreeHundred:
S1R = COEFR
S1I = COEFI
S2R = COEFR
S2I = COEFI
goto TwoTen
ThreeTen:
NZ = -2
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL, ELIM, ALIM
}
// SET K FUNCTIONS TO ZERO ON UNDERFLOW, CONTINUE RECURRENCE
// ON SCALED FUNCTIONS UNTIL TWO MEMBERS COME ON SCALE, THEN
// return WITH MIN(NZ+2,N) VALUES SCALED BY 1/TOL.
func Zkscl(ZRR, ZRI, FNU float64, N int, YR, YI []float64, RZR, RZI, ASCLE, TOL, ELIM float64) (
ZRRout, ZRIout, FNUout float64, Nout int, YRout, YIout []float64, NZ int, RZRout, RZIout, ASCLEout, TOLout, ELIMout float64) {
var ACS, AS, CKI, CKR, CSI, CSR, FN, STR, S1I, S1R, S2I,
S2R, ZEROI, ZEROR, ZDR, ZDI, CELMR, ELM, HELIM, ALAS float64
var I, IC, KK, NN, NW int
var tmp, c complex128
var CYR, CYI [3]float64
var sin, cos float64
// DIMENSION YR(N), YI(N), CYR(2), CYI(2)
ZEROR = 0
ZEROI = 0
IC = 0
NN = min(2, N)
for I = 1; I <= NN; I++ {
S1R = YR[I]
S1I = YI[I]
CYR[I] = S1R
CYI[I] = S1I
AS = cmplx.Abs(complex(S1R, S1I))
ACS = -ZRR + math.Log(AS)
NZ = NZ + 1
YR[I] = ZEROR
YI[I] = ZEROI
if ACS < (-ELIM) {
continue
}
tmp = cmplx.Log(complex(S1R, S1I))
CSR = real(tmp)
CSI = imag(tmp)
CSR = CSR - ZRR
CSI = CSI - ZRI
STR = math.Exp(CSR) / TOL
// sin, cos = math.Sincos(CSI)
CSR = STR * math.Cos(CSI)
CSI = STR * math.Sin(CSI)
c = complex(CSR, CSI)
NW = Zuchk(c, ASCLE, TOL)
if NW != 0 {
continue
}
YR[I] = CSR
YI[I] = CSI
IC = I
NZ = NZ - 1
}
if N == 1 {
return ZRR, ZRI, FNU, N, YR, YI, NZ, RZR, RZI, ASCLE, TOL, ELIM
}
if IC > 1 {
goto Twenty
}
YR[1] = ZEROR
YI[1] = ZEROI
NZ = 2
Twenty:
if N == 2 {
return ZRR, ZRI, FNU, N, YR, YI, NZ, RZR, RZI, ASCLE, TOL, ELIM
}
if NZ == 0 {
return ZRR, ZRI, FNU, N, YR, YI, NZ, RZR, RZI, ASCLE, TOL, ELIM
}
FN = FNU + 1.0e0
CKR = FN * RZR
CKI = FN * RZI
S1R = CYR[1]
S1I = CYI[1]
S2R = CYR[2]
S2I = CYI[2]
HELIM = 0.5e0 * ELIM
ELM = math.Exp(-ELIM)
CELMR = ELM
ZDR = ZRR
ZDI = ZRI
// FIND TWO CONSECUTIVE Y VALUES ON SCALE. SCALE RECURRENCE IF
// S2 GETS LARGER THAN EXP(ELIM/2)
for I = 3; I <= N; I++ {
KK = I
CSR = S2R
CSI = S2I
S2R = CKR*CSR - CKI*CSI + S1R
S2I = CKI*CSR + CKR*CSI + S1I
S1R = CSR
S1I = CSI
CKR = CKR + RZR
CKI = CKI + RZI
AS = cmplx.Abs(complex(S2R, S2I))
ALAS = math.Log(AS)
ACS = -ZDR + ALAS
NZ = NZ + 1
YR[I] = ZEROR
YI[I] = ZEROI
if ACS < (-ELIM) {
goto TwentyFive
}
tmp = cmplx.Log(complex(S2R, S2I))
CSR = real(tmp)
CSI = imag(tmp)
CSR = CSR - ZDR
CSI = CSI - ZDI
STR = math.Exp(CSR) / TOL
sin, cos = math.Sincos(CSI)
CSR = STR * cos
CSI = STR * sin
c = complex(CSR, CSI)
NW = Zuchk(c, ASCLE, TOL)
if NW != 0 {
goto TwentyFive
}
YR[I] = CSR
YI[I] = CSI
NZ = NZ - 1
if IC == KK-1 {
goto Forty
}
IC = KK
continue
TwentyFive:
if ALAS < HELIM {
continue
}
ZDR = ZDR - ELIM
S1R = S1R * CELMR
S1I = S1I * CELMR
S2R = S2R * CELMR
S2I = S2I * CELMR
}
NZ = N
if IC == N {
NZ = N - 1
}
goto FourtyFive
Forty:
NZ = KK - 2
FourtyFive:
for I = 1; I <= NZ; I++ {
YR[I] = ZEROR
YI[I] = ZEROI
}
return ZRR, ZRI, FNU, N, YR, YI, NZ, RZR, RZI, ASCLE, TOL, ELIM
}
// Zuchk tests whether the magnitude of the real or imaginary part would
// underflow when y is scaled by tol.
//
// y enters as a scaled quantity whose magnitude is greater than
//
// 1e3 + 3*dmach(1)/tol
//
// y is accepted if the underflow is at least one precision below the magnitude
// of the largest component. Otherwise an underflow is assumed as the phase angle
// does not have sufficient accuracy.
func Zuchk(y complex128, scale, tol float64) int {
absR := math.Abs(real(y))
absI := math.Abs(imag(y))
minAbs := math.Min(absR, absI)
if minAbs > scale {
return 0
}
maxAbs := math.Max(absR, absI)
minAbs /= tol
if maxAbs < minAbs {
return 1
}
return 0
}
// ZACAI APPLIES THE ANALYTIC CONTINUATION FORMULA
//
// K(FNU,ZN*EXP(MP))=K(FNU,ZN)*EXP(-MP*FNU) - MP*I(FNU,ZN)
// MP=PI*MR*CMPLX(0.0,1.0)
//
// TO CONTINUE THE K FUNCTION FROM THE RIGHT HALF TO THE LEFT
// HALF Z PLANE FOR USE WITH ZAIRY WHERE FNU=1/3 OR 2/3 AND N=1.
// ZACAI IS THE SAME AS ZACON WITH THE PARTS FOR LARGER ORDERS AND
// RECURRENCE REMOVED. A RECURSIVE CALL TO ZACON CAN RESULT if ZACON
// IS CALLED FROM ZAIRY.
func Zacai(ZR, ZI, FNU float64, KODE, MR, N int, YR, YI []float64, RL, TOL, ELIM, ALIM float64) (
ZRout, ZIout, FNUout float64, KODEout, MRout, Nout int, YRout, YIout []float64, NZ int, RLout, TOLout, ELIMout, ALIMout float64) {
var ARG, ASCLE, AZ, CSGNR, CSGNI, CSPNR,
CSPNI, C1R, C1I, C2R, C2I, DFNU, FMR, PI,
SGN, YY, ZNR, ZNI float64
var INU, IUF, NN, NW int
var zn, c1, c2, z complex128
var y []complex128
//var sin, cos float64
CYR := []float64{math.NaN(), 0, 0}
CYI := []float64{math.NaN(), 0, 0}
PI = math.Pi
ZNR = -ZR
ZNI = -ZI
AZ = cmplx.Abs(complex(ZR, ZI))
NN = N
DFNU = FNU + float64(float32(N-1))
if AZ <= 2.0e0 {
goto Ten
}
if AZ*AZ*0.25 > DFNU+1.0e0 {
goto Twenty
}
Ten:
// POWER SERIES FOR THE I FUNCTION.
z = complex(ZNR, ZNI)
y = make([]complex128, len(YR))
for i, v := range YR {
y[i] = complex(v, YI[i])
}
Zseri(z, FNU, KODE, NN, y[1:], TOL, ELIM, ALIM)
for i, v := range y {
YR[i] = real(v)
YI[i] = imag(v)
}
goto Forty
Twenty:
if AZ < RL {
goto Thirty
}
// ASYMPTOTIC EXPANSION FOR LARGE Z FOR THE I FUNCTION.
ZNR, ZNI, FNU, KODE, _, YR, YI, NW, RL, TOL, ELIM, ALIM = Zasyi(ZNR, ZNI, FNU, KODE, NN, YR, YI, RL, TOL, ELIM, ALIM)
if NW < 0 {
goto Eighty
}
goto Forty
Thirty:
// MILLER ALGORITHM NORMALIZED BY THE SERIES FOR THE I FUNCTION
ZNR, ZNI, FNU, KODE, _, YR, YI, NW, TOL = Zmlri(ZNR, ZNI, FNU, KODE, NN, YR, YI, TOL)
if NW < 0 {
goto Eighty
}
Forty:
// ANALYTIC CONTINUATION TO THE LEFT HALF PLANE FOR THE K FUNCTION.
ZNR, ZNI, FNU, KODE, _, CYR, CYI, NW, TOL, ELIM, ALIM = Zbknu(ZNR, ZNI, FNU, KODE, 1, CYR, CYI, TOL, ELIM, ALIM)
if NW != 0 {
goto Eighty
}
FMR = float64(float32(MR))
SGN = -math.Copysign(PI, FMR)
CSGNR = 0.0e0
CSGNI = SGN
if KODE == 1 {
goto Fifty
}
YY = -ZNI
//sin, cos = math.Sincos(YY)
CSGNR = -CSGNI * math.Sin(YY)
CSGNI = CSGNI * math.Cos(YY)
Fifty:
// CALCULATE CSPN=EXP(FNU*PI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE
// WHEN FNU IS LARGE
INU = int(float32(FNU))
ARG = (FNU - float64(float32(INU))) * SGN
//sin, cos = math.Sincos(ARG)
CSPNR = math.Cos(ARG)
CSPNI = math.Sin(ARG)
if INU%2 == 0 {
goto Sixty
}
CSPNR = -CSPNR
CSPNI = -CSPNI
Sixty:
C1R = CYR[1]
C1I = CYI[1]
C2R = YR[1]
C2I = YI[1]
if KODE == 1 {
goto Seventy
}
IUF = 0
ASCLE = 1.0e+3 * dmach[1] / TOL
zn = complex(ZNR, ZNI)
c1 = complex(C1R, C1I)
c2 = complex(C2R, C2I)
c1, c2, NW, _ = Zs1s2(zn, c1, c2, ASCLE, ALIM, IUF)
C1R = real(c1)
C1I = imag(c1)
C2R = real(c2)
C2I = imag(c2)
NZ = NZ + NW
Seventy:
YR[1] = CSPNR*C1R - CSPNI*C1I + CSGNR*C2R - CSGNI*C2I
YI[1] = CSPNR*C1I + CSPNI*C1R + CSGNR*C2I + CSGNI*C2R
return ZR, ZI, FNU, KODE, MR, N, YR, YI, NZ, RL, TOL, ELIM, ALIM
Eighty:
NZ = -1
if NW == -2 {
NZ = -2
}
return ZR, ZI, FNU, KODE, MR, N, YR, YI, NZ, RL, TOL, ELIM, ALIM
}
// ZASYI COMPUTES THE I BESSEL FUNCTION FOR REAL(Z)>=0.0 BY
// MEANS OF THE ASYMPTOTIC EXPANSION FOR LARGE CABS(Z) IN THE
// REGION CABS(Z)>MAX(RL,FNU*FNU/2). NZ=0 IS A NORMAL return.
// NZ<0 INDICATES AN OVERFLOW ON KODE=1.
func Zasyi(ZR, ZI, FNU float64, KODE, N int, YR, YI []float64, RL, TOL, ELIM, ALIM float64) (
ZRout, ZIout, FNUout float64, KODEout, Nout int, YRout, YIout []float64, NZ int, RLout, TOLout, ELIMout, ALIMout float64) {
var AA, AEZ, AK, AK1I, AK1R, ARG, ARM, ATOL,
AZ, BB, BK, CKI, CKR, CONEI, CONER, CS1I, CS1R, CS2I, CS2R, CZI,
CZR, DFNU, DKI, DKR, DNU2, EZI, EZR, FDN, PI, P1I,
P1R, RAZ, RTPI, RTR1, RZI, RZR, S, SGN, SQK, STI, STR, S2I,
S2R, TZI, TZR, ZEROI, ZEROR float64
var I, IB, IL, INU, J, JL, K, KODED, M, NN int
var tmp complex128
// var sin, cos float64
PI = math.Pi
RTPI = 0.159154943091895336e0
ZEROR = 0
ZEROI = 0
CONER = 1
CONEI = 0
AZ = cmplx.Abs(complex(ZR, ZI))
ARM = 1.0e3 * dmach[1]
RTR1 = math.Sqrt(ARM)
IL = min(2, N)
DFNU = FNU + float64(float32(N-IL))
// OVERFLOW TEST
RAZ = 1.0e0 / AZ
STR = ZR * RAZ
STI = -ZI * RAZ
AK1R = RTPI * STR * RAZ
AK1I = RTPI * STI * RAZ
tmp = cmplx.Sqrt(complex(AK1R, AK1I))
AK1R = real(tmp)
AK1I = imag(tmp)
CZR = ZR
CZI = ZI
if KODE != 2 {
goto Ten
}
CZR = ZEROR
CZI = ZI
Ten:
if math.Abs(CZR) > ELIM {
goto OneHundred
}
DNU2 = DFNU + DFNU
KODED = 1
if (math.Abs(CZR) > ALIM) && (N > 2) {
goto Twenty
}
KODED = 0
tmp = cmplx.Exp(complex(CZR, CZI))
STR = real(tmp)
STI = imag(tmp)
tmp = complex(AK1R, AK1I) * complex(STR, STI)
AK1R = real(tmp)
AK1I = imag(tmp)
Twenty:
FDN = 0.0e0
if DNU2 > RTR1 {
FDN = DNU2 * DNU2
}
EZR = ZR * 8.0e0
EZI = ZI * 8.0e0
// WHEN Z IS IMAGINARY, THE ERROR TEST MUST BE MADE RELATIVE TO THE
// FIRST RECIPROCAL POWER SINCE THIS IS THE LEADING TERM OF THE
// EXPANSION FOR THE IMAGINARY PART.
AEZ = 8.0e0 * AZ
S = TOL / AEZ
JL = int(float32(RL+RL)) + 2
P1R = ZEROR
P1I = ZEROI
if ZI == 0.0e0 {
goto Thirty
}
// CALCULATE EXP(PI*(0.5+FNU+N-IL)*I) TO MINIMIZE LOSSES OF
// SIGNIFICANCE WHEN FNU OR N IS LARGE
INU = int(float32(FNU))
ARG = (FNU - float64(float32(INU))) * PI
INU = INU + N - IL
//sin, cos = math.Sincos(ARG)
AK = -math.Sin(ARG)
BK = math.Cos(ARG)
if ZI < 0.0e0 {
BK = -BK
}
P1R = AK
P1I = BK
if INU%2 == 0 {
goto Thirty
}
P1R = -P1R
P1I = -P1I
Thirty:
for K = 1; K <= IL; K++ {
SQK = FDN - 1.0e0
ATOL = S * math.Abs(SQK)
SGN = 1.0e0
CS1R = CONER
CS1I = CONEI
CS2R = CONER
CS2I = CONEI
CKR = CONER
CKI = CONEI
AK = 0.0e0
AA = 1.0e0
BB = AEZ
DKR = EZR
DKI = EZI
// TODO(btracey): This loop is executed tens of thousands of times. Why?
// is that really necessary?
for J = 1; J <= JL; J++ {
tmp = complex(CKR, CKI) / complex(DKR, DKI)
STR = real(tmp)
STI = imag(tmp)
CKR = STR * SQK
CKI = STI * SQK
CS2R = CS2R + CKR
CS2I = CS2I + CKI
SGN = -SGN
CS1R = CS1R + CKR*SGN
CS1I = CS1I + CKI*SGN
DKR = DKR + EZR
DKI = DKI + EZI
AA = AA * math.Abs(SQK) / BB
BB = BB + AEZ
AK = AK + 8.0e0
SQK = SQK - AK
if AA <= ATOL {
goto Fifty
}
}
goto OneTen
Fifty:
S2R = CS1R
S2I = CS1I
if ZR+ZR >= ELIM {
goto Sixty
}
TZR = ZR + ZR
TZI = ZI + ZI
tmp = cmplx.Exp(complex(-TZR, -TZI))
STR = real(tmp)
STI = imag(tmp)
tmp = complex(STR, STI) * complex(P1R, P1I)
STR = real(tmp)
STI = imag(tmp)
tmp = complex(STR, STI) * complex(CS2R, CS2I)
STR = real(tmp)
STI = imag(tmp)
S2R = S2R + STR
S2I = S2I + STI
Sixty:
FDN = FDN + 8.0e0*DFNU + 4.0e0
P1R = -P1R
P1I = -P1I
M = N - IL + K
YR[M] = S2R*AK1R - S2I*AK1I
YI[M] = S2R*AK1I + S2I*AK1R
}
if N <= 2 {
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, RL, TOL, ELIM, ALIM
}
NN = N
K = NN - 2
AK = float64(float32(K))
STR = ZR * RAZ
STI = -ZI * RAZ
RZR = (STR + STR) * RAZ
RZI = (STI + STI) * RAZ
IB = 3
for I = IB; I <= NN; I++ {
YR[K] = (AK+FNU)*(RZR*YR[K+1]-RZI*YI[K+1]) + YR[K+2]
YI[K] = (AK+FNU)*(RZR*YI[K+1]+RZI*YR[K+1]) + YI[K+2]
AK = AK - 1.0e0
K = K - 1
}
if KODED == 0 {
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, RL, TOL, ELIM, ALIM
}
tmp = cmplx.Exp(complex(CZR, CZI))
CKR = real(tmp)
CKI = imag(tmp)
for I = 1; I <= NN; I++ {
STR = YR[I]*CKR - YI[I]*CKI
YI[I] = YR[I]*CKI + YI[I]*CKR
YR[I] = STR
}
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, RL, TOL, ELIM, ALIM
OneHundred:
NZ = -1
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, RL, TOL, ELIM, ALIM
OneTen:
NZ = -2
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, RL, TOL, ELIM, ALIM
}
// ZMLRI COMPUTES THE I BESSEL FUNCTION FOR RE(Z)>=0.0 BY THE
// MILLER ALGORITHM NORMALIZED BY A NEUMANN SERIES.
func Zmlri(ZR, ZI, FNU float64, KODE, N int, YR, YI []float64, TOL float64) (
ZRout, ZIout, FNUout float64, KODEout, Nout int, YRout, YIout []float64, NZ int, TOLout float64) {
var ACK, AK, AP, AT, AZ, BK, CKI, CKR, CNORMI,
CNORMR, CONEI, CONER, FKAP, FKK, FLAM, FNF, PTI, PTR, P1I,
P1R, P2I, P2R, RAZ, RHO, RHO2, RZI, RZR, SCLE, STI, STR, SUMI,
SUMR, TFNF, TST, ZEROI, ZEROR float64
var I, IAZ, IDUM, IFNU, INU, ITIME, K, KK, KM, M int
var tmp complex128
ZEROR = 0
ZEROI = 0
CONER = 1
CONEI = 0
SCLE = dmach[1] / TOL
AZ = cmplx.Abs(complex(ZR, ZI))
IAZ = int(float32(AZ))
IFNU = int(float32(FNU))
INU = IFNU + N - 1
AT = float64(float32(IAZ)) + 1.0e0
RAZ = 1.0e0 / AZ
STR = ZR * RAZ
STI = -ZI * RAZ
CKR = STR * AT * RAZ
CKI = STI * AT * RAZ
RZR = (STR + STR) * RAZ
RZI = (STI + STI) * RAZ
P1R = ZEROR
P1I = ZEROI
P2R = CONER
P2I = CONEI
ACK = (AT + 1.0e0) * RAZ
RHO = ACK + math.Sqrt(ACK*ACK-1.0e0)
RHO2 = RHO * RHO
TST = (RHO2 + RHO2) / ((RHO2 - 1.0e0) * (RHO - 1.0e0))
TST = TST / TOL
// COMPUTE RELATIVE TRUNCATION ERROR INDEX FOR SERIES.
//fmt.Println("before loop", P2R, P2I, CKR, CKI, RZR, RZI, TST, AK)
AK = AT
for I = 1; I <= 80; I++ {
PTR = P2R
PTI = P2I
P2R = P1R - (CKR*PTR - CKI*PTI)
P2I = P1I - (CKI*PTR + CKR*PTI)
P1R = PTR
P1I = PTI
CKR = CKR + RZR
CKI = CKI + RZI
AP = cmplx.Abs(complex(P2R, P2I))
if AP > TST*AK*AK {
goto Twenty
}
AK = AK + 1.0e0
}
goto OneTen
Twenty:
I = I + 1
K = 0
if INU < IAZ {
goto Forty
}
// COMPUTE RELATIVE TRUNCATION ERROR FOR RATIOS.
P1R = ZEROR
P1I = ZEROI
P2R = CONER
P2I = CONEI
AT = float64(float32(INU)) + 1.0e0
STR = ZR * RAZ
STI = -ZI * RAZ
CKR = STR * AT * RAZ
CKI = STI * AT * RAZ
ACK = AT * RAZ
TST = math.Sqrt(ACK / TOL)
ITIME = 1
for K = 1; K <= 80; K++ {
PTR = P2R
PTI = P2I
P2R = P1R - (CKR*PTR - CKI*PTI)
P2I = P1I - (CKR*PTI + CKI*PTR)
P1R = PTR
P1I = PTI
CKR = CKR + RZR
CKI = CKI + RZI
AP = cmplx.Abs(complex(P2R, P2I))
if AP < TST {
continue
}
if ITIME == 2 {
goto Forty
}
ACK = cmplx.Abs(complex(CKR, CKI))
FLAM = ACK + math.Sqrt(ACK*ACK-1.0e0)
FKAP = AP / cmplx.Abs(complex(P1R, P1I))
RHO = math.Min(FLAM, FKAP)
TST = TST * math.Sqrt(RHO/(RHO*RHO-1.0e0))
ITIME = 2
}
goto OneTen
Forty:
// BACKWARD RECURRENCE AND SUM NORMALIZING RELATION.
K = K + 1
KK = max(I+IAZ, K+INU)
FKK = float64(float32(KK))
P1R = ZEROR
P1I = ZEROI
// SCALE P2 AND SUM BY SCLE.
P2R = SCLE
P2I = ZEROI
FNF = FNU - float64(float32(IFNU))
TFNF = FNF + FNF
BK = dgamln(FKK+TFNF+1.0e0, IDUM) - dgamln(FKK+1.0e0, IDUM) - dgamln(TFNF+1.0e0, IDUM)
BK = math.Exp(BK)
SUMR = ZEROR
SUMI = ZEROI
KM = KK - INU
for I = 1; I <= KM; I++ {
PTR = P2R
PTI = P2I
P2R = P1R + (FKK+FNF)*(RZR*PTR-RZI*PTI)
P2I = P1I + (FKK+FNF)*(RZI*PTR+RZR*PTI)
P1R = PTR
P1I = PTI
AK = 1.0e0 - TFNF/(FKK+TFNF)
ACK = BK * AK
SUMR = SUMR + (ACK+BK)*P1R
SUMI = SUMI + (ACK+BK)*P1I
BK = ACK
FKK = FKK - 1.0e0
}
YR[N] = P2R
YI[N] = P2I
if N == 1 {
goto Seventy
}
for I = 2; I <= N; I++ {
PTR = P2R
PTI = P2I
P2R = P1R + (FKK+FNF)*(RZR*PTR-RZI*PTI)
P2I = P1I + (FKK+FNF)*(RZI*PTR+RZR*PTI)
P1R = PTR
P1I = PTI
AK = 1.0e0 - TFNF/(FKK+TFNF)
ACK = BK * AK
SUMR = SUMR + (ACK+BK)*P1R
SUMI = SUMI + (ACK+BK)*P1I
BK = ACK
FKK = FKK - 1.0e0
M = N - I + 1
YR[M] = P2R
YI[M] = P2I
}
Seventy:
if IFNU <= 0 {
goto Ninety
}
for I = 1; I <= IFNU; I++ {
PTR = P2R
PTI = P2I
P2R = P1R + (FKK+FNF)*(RZR*PTR-RZI*PTI)
P2I = P1I + (FKK+FNF)*(RZR*PTI+RZI*PTR)
P1R = PTR
P1I = PTI
AK = 1.0e0 - TFNF/(FKK+TFNF)
ACK = BK * AK
SUMR = SUMR + (ACK+BK)*P1R
SUMI = SUMI + (ACK+BK)*P1I
BK = ACK
FKK = FKK - 1.0e0
}
Ninety:
PTR = ZR
PTI = ZI
if KODE == 2 {
PTR = ZEROR
}
tmp = cmplx.Log(complex(RZR, RZI))
STR = real(tmp)
STI = imag(tmp)
P1R = -FNF*STR + PTR
P1I = -FNF*STI + PTI
AP = dgamln(1.0e0+FNF, IDUM)
PTR = P1R - AP
PTI = P1I
// THE DIVISION CEXP(PT)/(SUM+P2) IS ALTERED TO AVOID OVERFLOW
// IN THE DENOMINATOR BY SQUARING LARGE QUANTITIES.
P2R = P2R + SUMR
P2I = P2I + SUMI
AP = cmplx.Abs(complex(P2R, P2I))
P1R = 1.0e0 / AP
tmp = cmplx.Exp(complex(PTR, PTI))
STR = real(tmp)
STI = imag(tmp)
CKR = STR * P1R
CKI = STI * P1R
PTR = P2R * P1R
PTI = -P2I * P1R
tmp = complex(CKR, CKI) * complex(PTR, PTI)
CNORMR = real(tmp)
CNORMI = imag(tmp)
for I = 1; I <= N; I++ {
STR = YR[I]*CNORMR - YI[I]*CNORMI
YI[I] = YR[I]*CNORMI + YI[I]*CNORMR
YR[I] = STR
}
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL
OneTen:
NZ = -2
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL
}
// Zseri computes the I bessel function for real(z) >= 0 by means of the power
// series for large |z| in the region |z| <= 2*sqrt(fnu+1).
//
// nz = 0 is a normal return. nz > 0 means that the last nz components were set
// to zero due to underflow. nz < 0 means that underflow occurred, but the
// condition |z| <= 2*sqrt(fnu+1) was violated and the computation must be
// completed in another routine with n -= abs(nz).
func Zseri(z complex128, fnu float64, kode, n int, y []complex128, tol, elim, alim float64) (nz int) {
// TODO(btracey): The original fortran line is "ARM = 1.0D+3*D1MACH(1)". Evidently, in Fortran
// this is interpreted as one to the power of +3*D1MACH(1). While it is possible
// this was intentional, it seems unlikely.
arm := 1000 * dmach[1]
az := cmplx.Abs(z)
if az < arm {
for i := 0; i < n; i++ {
y[i] = 0
}
if fnu == 0 {
y[0] = 1
n--
}
if az == 0 {
return 0
}
return n
}
hz := 0.5 * z
var cz complex128
var acz float64
if az > math.Sqrt(arm) {
cz = hz * hz
acz = cmplx.Abs(cz)
}
NN := n
ck := cmplx.Log(hz)
var ak1 complex128
for {
dfnu := fnu + float64(NN-1)
// Underflow test.
ak1 = ck * complex(dfnu, 0)
ak := dgamln(dfnu+1, 0)
ak1 -= complex(ak, 0)
if kode == 2 {
ak1 -= complex(real(z), 0)
}
if real(ak1) > -elim {
break
}
nz++
y[NN-1] = 0
if acz > dfnu {
// Return with nz < 0 if abs(Z*Z/4)>fnu+u-nz-1 complete the calculation
// in cbinu with n = n - abs(nz).
nz *= -1
return nz
}
NN--
if NN == 0 {
return nz
}
}
crscr := 1.0
var flag int
var scale float64
aa := real(ak1)
if aa <= -alim {
flag = 1
crscr = tol
scale = arm / tol
aa -= math.Log(tol)
}
var w [2]complex128
for {
coef := cmplx.Exp(complex(aa, imag(ak1)))
atol := tol * acz / (fnu + float64(NN))
for i := 0; i < min(2, NN); i++ {
FNUP := fnu + float64(NN-i)
s1 := 1 + 0i
if acz >= tol*FNUP {
ak2 := 1 + 0i
ak := FNUP + 2
S := FNUP
scl := 2.0
first := true
for first || scl > atol {
ak2 = ak2 * cz * complex(1/S, 0)
scl *= acz / S
s1 += ak2
S += ak
ak += 2
first = false
}
}
s2 := s1 * coef
w[i] = s2
if flag == 1 {
if Zuchk(s2, scale, tol) != 0 {
var full bool
var dfnu float64
// This code is similar to the code that exists above. The
// code copying is here because the original Fortran used
// a goto to solve the loop-and-a-half problem. Removing the
// goto makes the behavior of the function and variable scoping
// much clearer, but requires copying this code due to Go's
// goto rules.
for {
if full {
dfnu = fnu + float64(NN-1)
// Underflow test.
ak1 = ck * complex(dfnu, 0)
ak1 -= complex(dgamln(dfnu+1, 0), 0)
if kode == 2 {
ak1 -= complex(real(z), 0)
}
if real(ak1) > -elim {
break
}
} else {
full = true
}
nz++
y[NN-1] = 0
if acz > dfnu {
// Return with nz < 0 if abs(Z*Z/4)>fnu+u-nz-1 complete the calculation
// in cbinu with n = n - abs(nz).
nz *= -1
return nz
}
NN--
if NN == 0 {
return nz
}
}
continue
}
}
y[NN-i-1] = s2 * complex(crscr, 0)
coef /= hz
coef *= complex(FNUP-1, 0)
}
break
}
if NN <= 2 {
return nz
}
rz := complex(2*real(z)/(az*az), -2*imag(z)/(az*az))
if flag == 0 {
for i := NN - 3; i >= 0; i-- {
y[i] = complex(float64(i+1)+fnu, 0)*rz*y[i+1] + y[i+2]
}
return nz
}
// exp(-alim)=exp(-elim)/tol=approximately one digit of precision above the
// underflow limit, which equals scale = dmach[1)*SS*1e3.
s1 := w[0]
s2 := w[1]
for K := NN - 3; K >= 0; K-- {
s1, s2 = s2, s1+complex(float64(K+1)+fnu, 0)*(rz*s2)
ck := s2 * complex(crscr, 0)
y[K] = ck
if cmplx.Abs(ck) > scale {
for ; K >= 0; K-- {
y[K] = complex(float64(K+1)+fnu, 0)*rz*y[K+1] + y[K+2]
}
return nz
}
}
return nz
}
// Zs1s2 tests for a possible underflow resulting from the addition of the I and
// K functions in the analytic continuation formula where s1 == K function and
// s2 == I function.
//
// When kode == 1, the I and K functions are different orders of magnitude.
//
// When kode == 2, they may both be of the same order of magnitude, but the maximum
// must be at least one precision above the underflow limit.
func Zs1s2(zr, s1, s2 complex128, scale, lim float64, iuf int) (s1o, s2o complex128, nz, iufo int) {
if s1 == 0 || math.Log(cmplx.Abs(s1))-2*real(zr) < -lim {
if cmplx.Abs(s2) > scale {
return 0, s2, 0, iuf
}
return 0, 0, 1, 0
}
// TODO(btracey): Written like this for numerical rounding reasons.
// Fix once we're sure other changes are correct.
s1 = cmplx.Exp(cmplx.Log(s1) - zr - zr)
if math.Max(cmplx.Abs(s1), cmplx.Abs(s2)) > scale {
return s1, s2, 0, iuf + 1
}
return 0, 0, 1, 0
}
func dgamln(z float64, ierr int) float64 {
//return amoslib.DgamlnFort(z)
// Go implementation.
if z < 0 {
return 0
}
a2, _ := math.Lgamma(z)
return a2
}
|