aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/gonum.org/v1/gonum/mathext/ell_complete.go
blob: bdba081aad49062dc27bc83d01167dc1ee901531 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package mathext

import (
	"math"
)

// CompleteK computes the complete elliptic integral of the 1st kind, 0≤m≤1. It returns math.NaN() if m is not in [0,1].
//
//	K(m) = \int_{0}^{π/2} 1/{\sqrt{1-m{\sin^2θ}}} dθ
func CompleteK(m float64) float64 {
	// Reference:
	// Toshio Fukushima, Precise and fast computation of complete elliptic integrals
	// by piecewise minimax rational function approximation,
	// Journal of Computational and Applied Mathematics, Volume 282, 2015, Pages 71-76.
	// https://doi.org/10.1016/j.cam.2014.12.038
	// Original Fortran code available at:
	// https://www.researchgate.net/publication/295857819_xceitxt_F90_package_of_complete_elliptic_integral_computation
	if m < 0 || 1 < m || math.IsNaN(m) {
		return math.NaN()
	}

	mc := 1 - m

	if mc > 0.592990 {
		t := 2.45694208987494165*mc - 1.45694208987494165
		t2 := t * t
		p := ((3703.75266375099019 + t2*(2744.82029097576810+t2*36.2381612593459565)) + t*(5462.47093231923466+t2*(543.839017382099411+t2*0.393188651542789784)))
		q := ((2077.94377067058435 + t2*(1959.05960044399275+t2*43.5464368440078942)) + t*(3398.00069767755460+t2*(472.794455487539279+t2)))
		return p / q
	}
	if mc > 0.350756 {
		t := 4.12823963605439369*mc - 1.44800482178389491
		t2 := t * t
		p := ((4264.28203103974630 + t2*(3214.59187442783167+t2*43.2589626155454993)) + t*(6341.90978213264024+t2*(642.790566685354573+t2*0.475223892294445943)))
		q := ((2125.06914237062279 + t2*(2006.03187933518870+t2*44.1848041560412224)) + t*(3479.95663350926514+t2*(482.900172581418890+t2)))
		return p / q
	}
	if mc > 0.206924 {
		t := 6.95255575949719117*mc - 1.43865064797819679
		t2 := t * t
		p := ((4870.25402224986382 + t2*(3738.29369283392307+t2*51.3609902253065926)) + t*(7307.18826377416591+t2*(754.928587580583704+t2*0.571948962277566451)))
		q := ((2172.51745704102287 + t2*(2056.13612019430497+t2*44.9026847057686146)) + t*(3565.04737778032566+t2*(493.962405117599400+t2)))
		return p / q
	}
	if mc > 0.121734 {
		t := 11.7384669562155183*mc - 1.42897053644793990
		t2 := t * t
		p := ((5514.8512729127464 + t2*(4313.60788246750934+t2*60.598720224393536)) + t*(8350.4595896779631+t2*(880.27903031894216+t2*0.68504458747933773)))
		q := ((2218.41682813309737 + t2*(2107.97379949034285+t2*45.6911096775045314)) + t*(3650.41829123846319+t2*(505.74295207655096+t2)))
		return p / q
	}
	if mc > 0.071412 {
		t := 19.8720241643813839*mc - 1.41910098962680339
		t2 := t * t
		p := ((6188.8743957372448 + t2*(4935.41351498551527+t2*70.981049144472361)) + t*(9459.3331440432847+t2*(1018.21910476032105+t2*0.81599895108245948)))
		q := ((2260.73112539748448 + t2*(2159.68721749761492+t2*46.5298955058476510)) + t*(3732.66955095581621+t2*(517.86964191812384+t2)))
		return p / q
	}
	if mc > 0.041770 {
		t := 33.7359152553808785*mc - 1.40914918021725929
		t2 := t * t
		p := ((6879.5170681289562 + t2*(5594.8381504799829+t2*82.452856129147838)) + t*(10615.0836403687221+t2*(1167.26108955935542+t2*0.96592719058503951)))
		q := ((2296.88303450660439 + t2*(2208.74949754945558+t2*47.3844470709989137)) + t*(3807.37745652028212+t2*(529.79651353072921+t2)))
		return p / q
	}
	if mc > 0.024360 {
		t := 57.4382538770821367*mc - 1.39919586444572085
		t2 := t * t
		p := ((7570.6827538712100 + t2*(6279.2661370014890+t2*94.886883830605940)) + t*(11792.9392624454532+t2*(1325.01058966228180+t2*1.13537029594409690)))
		q := ((2324.04824540459984 + t2*(2252.22250562615338+t2*48.2089280211559345)) + t*(3869.56755306385732+t2*(540.85752251676412+t2)))
		return p / q
	}
	if mc > 0.014165 {
		t := 98.0872976949485042*mc - 1.38940657184894556
		t2 := t * t
		p := ((8247.2601660137746 + t2*(6974.7495213178613+t2*108.098282908839979)) + t*(12967.7060124572914+t2*(1488.54008220335966+t2*1.32411616748380686)))
		q := ((2340.47337508405427 + t2*(2287.70677154700516+t2*48.9575432570382154)) + t*(3915.63324533769906+t2*(550.45072377717361+t2)))
		return p / q
	}
	if mc > 0.008213 {
		t := 168.010752688172043*mc - 1.37987231182795699
		t2 := t * t
		p := ((8894.2961573611293 + t2*(7666.5611739483371+t2*121.863474964652041)) + t*(14113.7038749808951+t2*(1654.60731579994159+t2*1.53112170837206117)))
		q := ((2344.88618943372377 + t2*(2313.28396270968662+t2*49.5906602613891184)) + t*(3942.81065054556536+t2*(558.07615380622169+t2)))
		return p / q
	}
	if mc > 0 {
		t := 1.0 - 121.758188238159016*mc
		p := -math.Log(mc*0.0625) * (34813.4518336350547 + t*(235.767716637974271+t*0.199792723884069485)) / (69483.5736412906324 + t*(614.265044703187382+t))
		q := -mc * (9382.53386835986099 + t*(51.6478985993381223+t*0.00410754154682816898)) / (37327.7262507318317 + t*(408.017247271148538+t))
		return p + q
	}

	return math.Inf(1)
}

// CompleteE computes the complete elliptic integral of the 2nd kind, 0≤m≤1. It returns math.NaN() if m is not in [0,1].
//
//	E(m) = \int_{0}^{π/2} {\sqrt{1-m{\sin^2θ}}} dθ
func CompleteE(m float64) float64 {
	// Reference:
	// Toshio Fukushima, Precise and fast computation of complete elliptic integrals
	// by piecewise minimax rational function approximation,
	// Journal of Computational and Applied Mathematics, Volume 282, 2015, Pages 71-76.
	// https://doi.org/10.1016/j.cam.2014.12.038
	// Original Fortran code available at:
	// https://www.researchgate.net/publication/295857819_xceitxt_F90_package_of_complete_elliptic_integral_computation
	if m < 0 || 1 < m || math.IsNaN(m) {
		return math.NaN()
	}

	mc := 1 - m

	if mc > 0.566638 {
		t := 2.30753965506897236*mc - 1.30753965506897236
		t2 := t * t
		p := ((19702.2363352671642 + t2*(18177.1879313824040+t2*409.975559128654710)) + t*(31904.1559574281609+t2*(4362.94760768571862+t2*10.3244775335024885)))
		q := ((14241.2135819448616 + t2*(10266.4884503526076+t2*117.162100771599098)) + t*(20909.9899599927367+t2*(1934.86289070792954+t2)))
		return p / q
	}
	if mc > 0.315153 {
		t := 3.97638030101198879*mc - 1.25316818100483130
		t2 := t * t
		p := ((16317.0721393008221 + t2*(15129.4009798463159+t2*326.113727011739428)) + t*(26627.8852140835023+t2*(3574.15857605556033+t2*7.93163724081373477)))
		q := ((13047.1505096551210 + t2*(9964.25173735060361+t2*117.670514069579649)) + t*(19753.5762165922376+t2*(1918.72232033637537+t2)))
		return p / q
	}
	if mc > 0.171355 {
		t := 6.95419964116329852*mc - 1.19163687951153702
		t2 := t * t
		p := ((13577.3850240991520 + t2*(12871.9137872656293+t2*263.964361648520708)) + t*(22545.4744699553993+t2*(3000.74575264868572+t2*6.08522443139677663)))
		q := ((11717.3306408059832 + t2*(9619.40382323874064+t2*118.690522739531267)) + t*(18431.1264424290258+t2*(1904.06010727307491+t2)))
		return p / q
	}
	if mc > 0.090670 {
		t := 12.3938774245522712*mc - 1.12375286608415443
		t2 := t * t
		p := ((11307.9485341543712 + t2*(11208.6068472959372+t2*219.253495956962613)) + t*(19328.6173704569489+t2*(2596.54874477084334+t2*4.66931143174036616)))
		q := ((10307.6837501971393 + t2*(9241.7604666150102+t2*120.498555754227847)) + t*(16982.2450249024383+t2*(1893.41905403040679+t2)))
		return p / q
	}
	if mc > 0.046453 {
		t := 22.6157360291290680*mc - 1.05056878576113260
		t2 := t * t
		p := ((9383.1490856819874 + t2*(9977.2498973537718+t2*188.618148076418837)) + t*(16718.9730458676860+t2*(2323.49987246555537+t2*3.59313532204509922)))
		q := ((8877.1964704758383 + t2*(8840.2771293410661+t2*123.422125687316355)) + t*(15450.0537230364062+t2*(1889.13672102820913+t2)))
		return p / q
	}
	if mc > 0.022912 {
		t := 42.4790790535661187*mc - 0.973280659275306911
		t2 := t * t
		p := ((7719.1171817802054 + t2*(9045.3996063894006+t2*169.386557799782496)) + t*(14521.7363804934985+t2*(2149.92068078627829+t2*2.78515570453129137)))
		q := ((7479.7539074698012 + t2*(8420.3848818926324+t2*127.802109608726363)) + t*(13874.4978011497847+t2*(1892.69753150329759+t2)))
		return p / q
	}
	if mc > 0.010809 {
		t := 82.6241427745187144*mc - 0.893084359249772784
		t2 := t * t
		p := ((6261.6095608987273 + t2*(8304.3265605809870+t2*159.371262600702237)) + t*(12593.0874916293982+t2*(2048.68391263416822+t2*2.18867046462858104)))
		q := ((6156.4532048239501 + t2*(7979.7435857665227+t2*133.911640385965187)) + t*(12283.8373999680518+t2*(1903.60556312663537+t2)))
		return p / q
	}
	if mc > 0.004841 {
		t := 167.560321715817694*mc - 0.811159517426273458
		t2 := t * t
		p := ((4978.06146583586728 + t2*(7664.6703673290453+t2*156.689647694892782)) + t*(10831.7178150656694+t2*(1995.66437151562090+t2*1.75859085945198570)))
		q := ((4935.56743322938333 + t2*(7506.8028283118051+t2*141.854303920116856)) + t*(10694.5510113880077+t2*(1918.38517009740321+t2)))
		return p / q
	}
	if mc > 0 {
		t := 1.0 - 206.568890725056806*mc
		p := -mc * math.Log(mc*0.0625) * (41566.6612602868736 + t*(154.034981522913482+t*0.0618072471798575991)) / (165964.442527585615 + t*(917.589668642251803+t))
		q := (132232.803956682877 + t*(353.375480007017643-t*1.40105837312528026)) / (132393.665743088043 + t*(192.112635228732532-t))
		return p + q
	}

	return 1
}

// CompleteB computes an associate complete elliptic integral of the 2nd kind, 0≤m≤1. It returns math.NaN() if m is not in [0,1].
//
//	B(m) = \int_{0}^{π/2} {\cos^2θ} / {\sqrt{1-m{\sin^2θ}}} dθ
func CompleteB(m float64) float64 {
	// Reference:
	// Toshio Fukushima, Precise and fast computation of complete elliptic integrals
	// by piecewise minimax rational function approximation,
	// Journal of Computational and Applied Mathematics, Volume 282, 2015, Pages 71-76.
	// https://doi.org/10.1016/j.cam.2014.12.038
	// Original Fortran code available at:
	// https://www.researchgate.net/publication/295857819_xceitxt_F90_package_of_complete_elliptic_integral_computation
	if m < 0 || 1 < m || math.IsNaN(m) {
		return math.NaN()
	}

	mc := 1 - m

	if mc > 0.555073 {
		t := 2.24755971204264969*mc - 1.24755971204264969
		t2 := t * t
		p := ((2030.25011505956379 + t2*(1727.60635612511943+t2*25.0715510300422010)) + t*(3223.16236100954529+t2*(361.164121995173076+t2*0.280355207707726826)))
		q := ((2420.64907902774675 + t2*(2327.48464880306840+t2*47.9870997057202318)) + t*(4034.28168313496638+t2*(549.234220839203960+t2)))
		return p / q
	}
	if mc > 0.302367 {
		t := 3.95716761770595079*mc - 1.19651690106289522
		t2 := t * t
		p := ((2209.26925068374373 + t2*(1981.37862223307242+t2*29.7612810087709299)) + t*(3606.58475322372526+t2*(422.693774742063054+t2*0.334623999861181980)))
		q := ((2499.57898767250755 + t2*(2467.63998386656941+t2*50.0198090806651216)) + t*(4236.30953048456334+t2*(581.879599221457589+t2)))
		return p / q
	}
	if mc > 0.161052 {
		t := 7.07638962601280827*mc - 1.13966670204861480
		t2 := t * t
		p := ((2359.14823394150129 + t2*(2254.30785457761760+t2*35.2259786264917876)) + t*(3983.28520266051676+t2*(492.601686517364701+t2*0.396605124984359783)))
		q := ((2563.95563932625156 + t2*(2633.23323959119935+t2*52.6711647124832948)) + t*(4450.19076667898892+t2*(622.983787815718489+t2)))
		return p / q
	}
	if mc > 0.083522 {
		t := 12.8982329420869341*mc - 1.07728621178898491
		t2 := t * t
		p := ((2464.65334987833736 + t2*(2541.68516994216007+t2*41.5832527504007778)) + t*(4333.38639187691528+t2*(571.53606797524881+t2*0.465975784547025267)))
		q := ((2600.66956117247726 + t2*(2823.69445052534842+t2*56.136001230010910)) + t*(4661.64381841490914+t2*(674.25435972414302+t2)))
		return p / q
	}
	if mc > 0.041966 {
		t := 24.0639137549331023*mc - 1.00986620463952257
		t2 := t * t
		p := ((2509.86724450741259 + t2*(2835.27071287535469+t2*48.9701196718008345)) + t*(4631.12336462339975+t2*(659.86172161727281+t2*0.54158304771955794)))
		q := ((2594.15983397593723 + t2*(3034.20118545214106+t2*60.652838995496991)) + t*(4848.17491604384532+t2*(737.15143838356850+t2)))
		return p / q
	}
	if mc > 0.020313 {
		t := 46.1829769546944996*mc - 0.938114810880709371
		t2 := t * t
		p := ((2480.58307884128017 + t2*(3122.00900554841322+t2*57.541132641218839)) + t*(4845.57861173250699+t2*(757.31633816400643+t2*0.62119950515996627)))
		q := ((2528.85218300581396 + t2*(3253.86151324157460+t2*66.496093157522450)) + t*(4979.31783250484768+t2*(812.40556572486862+t2)))
		return p / q
	}
	if mc > 0.009408 {
		t := 91.7010545621274645*mc - 0.862723521320495186
		t2 := t * t
		p := ((2365.25385348859592 + t2*(3381.09304915246175+t2*67.442026950538221)) + t*(4939.53925884558687+t2*(862.16657576129841+t2*0.70143698925710129)))
		q := ((2390.48737882063755 + t2*(3462.34808443022907+t2*73.934680452209164)) + t*(5015.4675579215077+t2*(898.99542983710459+t2)))
		return p / q
	}
	if mc > 0.004136 {
		t := 189.681335356600910*mc - 0.784522003034901366
		t2 := t * t
		p := ((2160.82916040868119 + t2*(3584.53058926175721+t2*78.769178005879162)) + t*(4877.14832623847052+t2*(970.53716686804832+t2*0.77797110431753920)))
		q := ((2172.70451405048305 + t2*(3630.52345460629336+t2*83.173163222639080)) + t*(4916.35263668839769+t2*(993.36676027886685+t2)))
		return p / q
	}
	if mc > 0 {
		t := 1 - 106.292517006802721*mc
		p := mc * math.Log(mc*0.0625) * (6607.46457640413908 + t*(19.0287633783211078-t*0.00625368946932704460)) / (26150.3443630974309 + t*(354.603981274536040+t))
		q := (26251.5678902584870 + t*(168.788023807915689+t*0.352150236262724288)) / (26065.7912239203873 + t*(353.916840382280456+t))
		return p + q
	}

	return 1
}

// CompleteD computes an associate complete elliptic integral of the 2nd kind, 0≤m≤1. It returns math.NaN() if m is not in [0,1].
//
//	D(m) = \int_{0}^{π/2} {\sin^2θ} / {\sqrt{1-m{\sin^2θ}}} dθ
func CompleteD(m float64) float64 {
	// Reference:
	// Toshio Fukushima, Precise and fast computation of complete elliptic integrals
	// by piecewise minimax rational function approximation,
	// Journal of Computational and Applied Mathematics, Volume 282, 2015, Pages 71-76.
	// https://doi.org/10.1016/j.cam.2014.12.038
	// Original Fortran code available at:
	// https://www.researchgate.net/publication/295857819_xceitxt_F90_package_of_complete_elliptic_integral_computation
	if m < 0 || 1 < m || math.IsNaN(m) {
		return math.NaN()
	}

	mc := 1 - m

	if mc > 0.599909 {
		t := 2.49943137936119533*mc - 1.49943137936119533
		t2 := t * t
		p := ((1593.39813781813498 + t2*(1058.56241259843217+t2*11.7584241242587571)) + t*(2233.25576544961714+t2*(195.247394601357872+t2*0.101486443490307517)))
		q := ((1685.47865546030468 + t2*(1604.88100543517015+t2*38.6743012128666717)) + t*(2756.20968383181114+t2*(397.504162950935944+t2)))
		return p / q
	}
	if mc > 0.359180 {
		t := 4.15404874360795750*mc - 1.49205122772910617
		t2 := t * t
		p := ((1967.01442513777287 + t2*(1329.30058268219177+t2*15.0447805948342760)) + t*(2779.87604145516343+t2*(247.475085945854673+t2*0.130547566005491628)))
		q := ((1749.70634057327467 + t2*(1654.40804288486242+t2*39.1895256017535337)) + t*(2853.92630369567765+t2*(406.925098588378587+t2)))
		return p / q
	}
	if mc > 0.214574 {
		t := 6.91534237860116454*mc - 1.48385267554596628
		t2 := t * t
		p := ((2409.64196912091452 + t2*(1659.30176823041376+t2*19.1942111405094383)) + t*(3436.40744503228691+t2*(312.186468430688790+t2*0.167847673021897479)))
		q := ((1824.89205701262525 + t2*(1715.38574780156913+t2*39.8798253173462218)) + t*(2971.02216287936566+t2*(418.929791715319490+t2)))
		return p / q
	}
	if mc > 0.127875 {
		t := 11.5341584101316047*mc - 1.47493050669557896
		t2 := t * t
		p := ((2926.81143179637839 + t2*(2056.45624281065334+t2*24.3811986813439843)) + t*(4214.52119721241319+t2*(391.420514384925370+t2*0.215574280659075512)))
		q := ((1910.33091918583314 + t2*(1787.99942542734799+t2*40.7663012893484449)) + t*(3107.04531802441481+t2*(433.673494280825971+t2)))
		return p / q
	}
	if mc > 0.076007 {
		t := 19.2797100331611013*mc - 1.46539292049047582
		t2 := t * t
		p := ((3520.63614251102960 + t2*(2526.67111759550923+t2*30.7739877519417978)) + t*(5121.2842239226937+t2*(486.926821696342529+t2*0.276315678908126399)))
		q := ((2003.81997889501324 + t2*(1871.05914195570669+t2*41.8489850490387023)) + t*(3259.09205279874214+t2*(451.007555352632053+t2)))
		return p / q
	}
	if mc > 0.045052 {
		t := 32.3049588111775157*mc - 1.45540300436116944
		t2 := t * t
		p := ((4188.00087087025347 + t2*(3072.05695847158556+t2*38.5070211470790031)) + t*(6156.0080960857764+t2*(599.76666155374012+t2*0.352955925261363680)))
		q := ((2101.60113938424690 + t2*(1961.76794074710108+t2*43.0997999502743622)) + t*(3421.55151253792527+t2*(470.407158843118117+t2)))
		return p / q
	}
	if mc > 0.026626 {
		t := 54.2711386084880061*mc - 1.44502333658960165
		t2 := t * t
		p := ((4916.74442376570733 + t2*(3688.12811638360551+t2*47.6447145147811350)) + t*(7304.6632479558695+t2*(729.75841970840314+t2*0.448422756936257635)))
		q := ((2197.49982676612397 + t2*(2055.19657857622715+t2*44.4576261146308645)) + t*(3584.94502590860852+t2*(490.880160668822953+t2)))
		return p / q
	}
	if mc > 0.015689 {
		t := 91.4327512114839536*mc - 1.43448843375697175
		t2 := t * t
		p := ((5688.7542903989517 + t2*(4364.21513060078954+t2*58.159468141567195)) + t*(8542.6096475195826+t2*(875.35992968472914+t2*0.56528145509695951)))
		q := ((2285.44062680812883 + t2*(2145.80779422696555+t2*45.8427480379028781)) + t*(3739.30422133833258+t2*(511.23253971875808+t2)))
		return p / q
	}
	if mc > 0.009216 {
		t := 154.487872701992894*mc - 1.42376023482156651
		t2 := t * t
		p := ((6475.3392225234969 + t2*(5081.2997108708577+t2*69.910123337464043)) + t*(9829.1138694605662+t2*(1033.32687775311981+t2*0.70526087421186325)))
		q := ((2357.74885505777295 + t2*(2226.89527217032394+t2*47.1609071069631012)) + t*(3872.32565152553360+t2*(530.03943432061149+t2)))
		return p / q
	}
	if mc > 0 {
		t := 1 - 108.506944444444444*mc
		p := -math.Log(mc*0.0625) * (6.2904323649908115e6 + t*(58565.284164780476+t*(131.176674599188545+t*0.0426826410911220304))) / (1.24937550257219890e7 + t*(203580.534005225410+t*(921.17729845011868+t)))
		q := -(27356.1090344387530 + t*(107.767403612304371-t*0.0827769227048233593)) / (27104.0854889805978 + t*(358.708172147752755+t))
		return p + q
	}

	return math.Inf(1)
}