aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/gonum.org/v1/gonum/mathext/ell_carlson.go
blob: 1334f6b94adb90119bed998943381274cf4208a9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package mathext

import (
	"math"
)

// EllipticRF computes the symmetric elliptic integral R_F(x,y,z):
//
//	R_F(x,y,z) = (1/2)\int_{0}^{\infty}{1/s(t)} dt,
//	s(t) = \sqrt{(t+x)(t+y)(t+z)}.
//
// The arguments x, y, z must satisfy the following conditions, otherwise the function returns math.NaN():
//
//	0 ≤ x,y,z ≤ upper,
//	lower ≤ x+y,y+z,z+x,
//
// where:
//
//	lower = 5/(2^1022) = 1.112536929253601e-307,
//	upper = (2^1022)/5 = 8.988465674311580e+306.
//
// The definition of the symmetric elliptic integral R_F can be found in NIST
// Digital Library of Mathematical Functions (http://dlmf.nist.gov/19.16.E1).
func EllipticRF(x, y, z float64) float64 {
	// The original Fortran code was published as Algorithm 577 in ACM TOMS (http://doi.org/10.1145/355958.355970).
	// This code is also available as a part of SLATEC Common Mathematical Library (http://netlib.org/slatec/index.html). Later, Carlson described
	// an improved version in http://dx.doi.org/10.1007/BF02198293 (also available at https://arxiv.org/abs/math/9409227).
	const (
		lower = 5.0 / (1 << 256) / (1 << 256) / (1 << 256) / (1 << 254) // 5*2^-1022
		upper = 1 / lower
		tol   = 1.2674918778210762260320167734407048051023273568443e-02 // (3ε)^(1/8)
	)
	if x < 0 || y < 0 || z < 0 || math.IsNaN(x) || math.IsNaN(y) || math.IsNaN(z) {
		return math.NaN()
	}
	if upper < x || upper < y || upper < z {
		return math.NaN()
	}
	if x+y < lower || y+z < lower || z+x < lower {
		return math.NaN()
	}

	A0 := (x + y + z) / 3
	An := A0
	Q := math.Max(math.Max(math.Abs(A0-x), math.Abs(A0-y)), math.Abs(A0-z)) / tol
	xn, yn, zn := x, y, z
	mul := 1.0

	for Q >= mul*math.Abs(An) {
		xnsqrt, ynsqrt, znsqrt := math.Sqrt(xn), math.Sqrt(yn), math.Sqrt(zn)
		lambda := xnsqrt*ynsqrt + ynsqrt*znsqrt + znsqrt*xnsqrt
		An = (An + lambda) * 0.25
		xn = (xn + lambda) * 0.25
		yn = (yn + lambda) * 0.25
		zn = (zn + lambda) * 0.25
		mul *= 4
	}

	X := (A0 - x) / (mul * An)
	Y := (A0 - y) / (mul * An)
	Z := -(X + Y)
	E2 := X*Y - Z*Z
	E3 := X * Y * Z

	// http://dlmf.nist.gov/19.36.E1
	return (1 - 1/10.0*E2 + 1/14.0*E3 + 1/24.0*E2*E2 - 3/44.0*E2*E3 - 5/208.0*E2*E2*E2 + 3/104.0*E3*E3 + 1/16.0*E2*E2*E3) / math.Sqrt(An)
}

// EllipticRD computes the symmetric elliptic integral R_D(x,y,z):
//
//	R_D(x,y,z) = (1/2)\int_{0}^{\infty}{1/(s(t)(t+z))} dt,
//	s(t) = \sqrt{(t+x)(t+y)(t+z)}.
//
// The arguments x, y, z must satisfy the following conditions, otherwise the function returns math.NaN():
//
//	0 ≤ x,y ≤ upper,
//	lower ≤ z ≤ upper,
//	lower ≤ x+y,
//
// where:
//
//	lower = (5/(2^1022))^(1/3) = 4.809554074311679e-103,
//	upper = ((2^1022)/5)^(1/3) = 2.079194837087086e+102.
//
// The definition of the symmetric elliptic integral R_D can be found in NIST
// Digital Library of Mathematical Functions (http://dlmf.nist.gov/19.16.E5).
func EllipticRD(x, y, z float64) float64 {
	// The original Fortran code was published as Algorithm 577 in ACM TOMS (http://doi.org/10.1145/355958.355970).
	// This code is also available as a part of SLATEC Common Mathematical Library (http://netlib.org/slatec/index.html). Later, Carlson described
	// an improved version in http://dx.doi.org/10.1007/BF02198293 (also available at https://arxiv.org/abs/math/9409227).
	const (
		lower = 4.8095540743116787026618007863123676393525016818363e-103 // (5*2^-1022)^(1/3)
		upper = 1 / lower
		tol   = 9.0351169339315770474760122547068324993857488849382e-03 // (ε/5)^(1/8)
	)
	if x < 0 || y < 0 || math.IsNaN(x) || math.IsNaN(y) || math.IsNaN(z) {
		return math.NaN()
	}
	if upper < x || upper < y || upper < z {
		return math.NaN()
	}
	if x+y < lower || z < lower {
		return math.NaN()
	}

	A0 := (x + y + 3*z) / 5
	An := A0
	Q := math.Max(math.Max(math.Abs(A0-x), math.Abs(A0-y)), math.Abs(A0-z)) / tol
	xn, yn, zn := x, y, z
	mul, s := 1.0, 0.0

	for Q >= mul*math.Abs(An) {
		xnsqrt, ynsqrt, znsqrt := math.Sqrt(xn), math.Sqrt(yn), math.Sqrt(zn)
		lambda := xnsqrt*ynsqrt + ynsqrt*znsqrt + znsqrt*xnsqrt
		s += 1 / (mul * znsqrt * (zn + lambda))
		An = (An + lambda) * 0.25
		xn = (xn + lambda) * 0.25
		yn = (yn + lambda) * 0.25
		zn = (zn + lambda) * 0.25
		mul *= 4
	}

	X := (A0 - x) / (mul * An)
	Y := (A0 - y) / (mul * An)
	Z := -(X + Y) / 3
	E2 := X*Y - 6*Z*Z
	E3 := (3*X*Y - 8*Z*Z) * Z
	E4 := 3 * (X*Y - Z*Z) * Z * Z
	E5 := X * Y * Z * Z * Z

	// http://dlmf.nist.gov/19.36.E2
	return (1-3/14.0*E2+1/6.0*E3+9/88.0*E2*E2-3/22.0*E4-9/52.0*E2*E3+3/26.0*E5-1/16.0*E2*E2*E2+3/40.0*E3*E3+3/20.0*E2*E4+45/272.0*E2*E2*E3-9/68.0*(E3*E4+E2*E5))/(mul*An*math.Sqrt(An)) + 3*s
}

// EllipticF computes the Legendre's elliptic integral of the 1st kind F(phi,m), 0≤m<1:
//
//	F(\phi,m) = \int_{0}^{\phi} 1 / \sqrt{1-m\sin^2(\theta)} d\theta
//
// Legendre's elliptic integrals can be expressed as symmetric elliptic integrals, in this case:
//
//	F(\phi,m) = \sin\phi R_F(\cos^2\phi,1-m\sin^2\phi,1)
//
// The definition of F(phi,k) where k=sqrt(m) can be found in NIST Digital Library of Mathematical
// Functions (http://dlmf.nist.gov/19.2.E4).
func EllipticF(phi, m float64) float64 {
	s, c := math.Sincos(phi)
	return s * EllipticRF(c*c, 1-m*s*s, 1)
}

// EllipticE computes the Legendre's elliptic integral of the 2nd kind E(phi,m), 0≤m<1:
//
//	E(\phi,m) = \int_{0}^{\phi} \sqrt{1-m\sin^2(\theta)} d\theta
//
// Legendre's elliptic integrals can be expressed as symmetric elliptic integrals, in this case:
//
//	E(\phi,m) = \sin\phi R_F(\cos^2\phi,1-m\sin^2\phi,1)-(m/3)\sin^3\phi R_D(\cos^2\phi,1-m\sin^2\phi,1)
//
// The definition of E(phi,k) where k=sqrt(m) can be found in NIST Digital Library of Mathematical
// Functions (http://dlmf.nist.gov/19.2.E5).
func EllipticE(phi, m float64) float64 {
	s, c := math.Sincos(phi)
	x, y := c*c, 1-m*s*s
	return s * (EllipticRF(x, y, 1) - (m/3)*s*s*EllipticRD(x, y, 1))
}