1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
|
// Copyright ©2020 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/internal/asm/f64"
"gonum.org/v1/gonum/lapack/lapack64"
)
var (
tridiagDense *Tridiag
_ Matrix = tridiagDense
_ allMatrix = tridiagDense
_ denseMatrix = tridiagDense
_ Banded = tridiagDense
_ MutableBanded = tridiagDense
_ RawTridiagonaler = tridiagDense
)
// A RawTridiagonaler can return a lapack64.Tridiagonal representation of the
// receiver. Changes to the elements of DL, D, DU in lapack64.Tridiagonal will
// be reflected in the original matrix, changes to the N field will not.
type RawTridiagonaler interface {
RawTridiagonal() lapack64.Tridiagonal
}
// Tridiag represents a tridiagonal matrix by its three diagonals.
type Tridiag struct {
mat lapack64.Tridiagonal
}
// NewTridiag creates a new n×n tridiagonal matrix with the first sub-diagonal
// in dl, the main diagonal in d and the first super-diagonal in du. If all of
// dl, d, and du are nil, new backing slices will be allocated for them. If dl
// and du have length n-1 and d has length n, they will be used as backing
// slices, and changes to the elements of the returned Tridiag will be reflected
// in dl, d, du. If neither of these is true, NewTridiag will panic.
func NewTridiag(n int, dl, d, du []float64) *Tridiag {
if n <= 0 {
if n == 0 {
panic(ErrZeroLength)
}
panic(ErrNegativeDimension)
}
if dl != nil || d != nil || du != nil {
if len(dl) != n-1 || len(d) != n || len(du) != n-1 {
panic(ErrShape)
}
} else {
d = make([]float64, n)
if n > 1 {
dl = make([]float64, n-1)
du = make([]float64, n-1)
}
}
return &Tridiag{
mat: lapack64.Tridiagonal{
N: n,
DL: dl,
D: d,
DU: du,
},
}
}
// Dims returns the number of rows and columns in the matrix.
func (a *Tridiag) Dims() (r, c int) {
return a.mat.N, a.mat.N
}
// Bandwidth returns 1, 1 - the upper and lower bandwidths of the matrix.
func (a *Tridiag) Bandwidth() (kl, ku int) {
return 1, 1
}
// T performs an implicit transpose by returning the receiver inside a Transpose.
func (a *Tridiag) T() Matrix {
// An alternative would be to return the receiver with DL,DU swapped; the
// untranspose function would then always return false. With Transpose the
// diagonal swapping will be done in tridiagonal routines in lapack like
// lapack64.Gtsv or gonum.Dlagtm based on the trans parameter.
return Transpose{a}
}
// TBand performs an implicit transpose by returning the receiver inside a
// TransposeBand.
func (a *Tridiag) TBand() Banded {
// An alternative would be to return the receiver with DL,DU swapped; see
// explanation in T above.
return TransposeBand{a}
}
// RawTridiagonal returns the underlying lapack64.Tridiagonal used by the
// receiver. Changes to elements in the receiver following the call will be
// reflected in the returned matrix.
func (a *Tridiag) RawTridiagonal() lapack64.Tridiagonal {
return a.mat
}
// SetRawTridiagonal sets the underlying lapack64.Tridiagonal used by the
// receiver. Changes to elements in the receiver following the call will be
// reflected in the input.
func (a *Tridiag) SetRawTridiagonal(mat lapack64.Tridiagonal) {
a.mat = mat
}
// IsEmpty returns whether the receiver is empty. Empty matrices can be the
// receiver for size-restricted operations. The receiver can be zeroed using
// Reset.
func (a *Tridiag) IsEmpty() bool {
return a.mat.N == 0
}
// Reset empties the matrix so that it can be reused as the receiver of a
// dimensionally restricted operation.
//
// Reset should not be used when the matrix shares backing data. See the Reseter
// interface for more information.
func (a *Tridiag) Reset() {
a.mat.N = 0
a.mat.DL = a.mat.DL[:0]
a.mat.D = a.mat.D[:0]
a.mat.DU = a.mat.DU[:0]
}
// CloneFromTridiag makes a copy of the input Tridiag into the receiver,
// overwriting the previous value of the receiver. CloneFromTridiag does not
// place any restrictions on receiver shape.
func (a *Tridiag) CloneFromTridiag(from *Tridiag) {
n := from.mat.N
switch n {
case 0:
panic(ErrZeroLength)
case 1:
a.mat = lapack64.Tridiagonal{
N: 1,
DL: use(a.mat.DL, 0),
D: use(a.mat.D, 1),
DU: use(a.mat.DU, 0),
}
a.mat.D[0] = from.mat.D[0]
default:
a.mat = lapack64.Tridiagonal{
N: n,
DL: use(a.mat.DL, n-1),
D: use(a.mat.D, n),
DU: use(a.mat.DU, n-1),
}
copy(a.mat.DL, from.mat.DL)
copy(a.mat.D, from.mat.D)
copy(a.mat.DU, from.mat.DU)
}
}
// DiagView returns the diagonal as a matrix backed by the original data.
func (a *Tridiag) DiagView() Diagonal {
return &DiagDense{
mat: blas64.Vector{
N: a.mat.N,
Data: a.mat.D[:a.mat.N],
Inc: 1,
},
}
}
// Zero sets all of the matrix elements to zero.
func (a *Tridiag) Zero() {
zero(a.mat.DL)
zero(a.mat.D)
zero(a.mat.DU)
}
// Trace returns the trace of the matrix.
//
// Trace will panic with ErrZeroLength if the matrix has zero size.
func (a *Tridiag) Trace() float64 {
if a.IsEmpty() {
panic(ErrZeroLength)
}
return f64.Sum(a.mat.D)
}
// Norm returns the specified norm of the receiver. Valid norms are:
//
// 1 - The maximum absolute column sum
// 2 - The Frobenius norm, the square root of the sum of the squares of the elements
// Inf - The maximum absolute row sum
//
// Norm will panic with ErrNormOrder if an illegal norm is specified and with
// ErrZeroLength if the matrix has zero size.
func (a *Tridiag) Norm(norm float64) float64 {
if a.IsEmpty() {
panic(ErrZeroLength)
}
return lapack64.Langt(normLapack(norm, false), a.mat)
}
// MulVecTo computes A⋅x or Aᵀ⋅x storing the result into dst.
func (a *Tridiag) MulVecTo(dst *VecDense, trans bool, x Vector) {
n := a.mat.N
if x.Len() != n {
panic(ErrShape)
}
dst.reuseAsNonZeroed(n)
t := blas.NoTrans
if trans {
t = blas.Trans
}
xMat, _ := untransposeExtract(x)
if xVec, ok := xMat.(*VecDense); ok && dst != xVec {
dst.checkOverlap(xVec.mat)
lapack64.Lagtm(t, 1, a.mat, xVec.asGeneral(), 0, dst.asGeneral())
} else {
xCopy := getVecDenseWorkspace(n, false)
xCopy.CloneFromVec(x)
lapack64.Lagtm(t, 1, a.mat, xCopy.asGeneral(), 0, dst.asGeneral())
putVecDenseWorkspace(xCopy)
}
}
// SolveTo solves a tridiagonal system A⋅X = B or Aᵀ⋅X = B where A is an
// n×n tridiagonal matrix represented by the receiver and B is a given n×nrhs
// matrix. If A is non-singular, the result will be stored into dst and nil will
// be returned. If A is singular, the contents of dst will be undefined and a
// Condition error will be returned.
func (a *Tridiag) SolveTo(dst *Dense, trans bool, b Matrix) error {
n, nrhs := b.Dims()
if n != a.mat.N {
panic(ErrShape)
}
if b, ok := b.(RawMatrixer); ok && dst != b {
dst.checkOverlap(b.RawMatrix())
}
dst.reuseAsNonZeroed(n, nrhs)
if dst != b {
dst.Copy(b)
}
var aCopy Tridiag
aCopy.CloneFromTridiag(a)
var ok bool
if trans {
ok = lapack64.Gtsv(blas.Trans, aCopy.mat, dst.mat)
} else {
ok = lapack64.Gtsv(blas.NoTrans, aCopy.mat, dst.mat)
}
if !ok {
return Condition(math.Inf(1))
}
return nil
}
// SolveVecTo solves a tridiagonal system A⋅X = B or Aᵀ⋅X = B where A is an
// n×n tridiagonal matrix represented by the receiver and b is a given n-vector.
// If A is non-singular, the result will be stored into dst and nil will be
// returned. If A is singular, the contents of dst will be undefined and a
// Condition error will be returned.
func (a *Tridiag) SolveVecTo(dst *VecDense, trans bool, b Vector) error {
n, nrhs := b.Dims()
if n != a.mat.N || nrhs != 1 {
panic(ErrShape)
}
if b, ok := b.(RawVectorer); ok && dst != b {
dst.checkOverlap(b.RawVector())
}
dst.reuseAsNonZeroed(n)
if dst != b {
dst.CopyVec(b)
}
var aCopy Tridiag
aCopy.CloneFromTridiag(a)
var ok bool
if trans {
ok = lapack64.Gtsv(blas.Trans, aCopy.mat, dst.asGeneral())
} else {
ok = lapack64.Gtsv(blas.NoTrans, aCopy.mat, dst.asGeneral())
}
if !ok {
return Condition(math.Inf(1))
}
return nil
}
// DoNonZero calls the function fn for each of the non-zero elements of A. The
// function fn takes a row/column index and the element value of A at (i,j).
func (a *Tridiag) DoNonZero(fn func(i, j int, v float64)) {
for i, aij := range a.mat.DU {
if aij != 0 {
fn(i, i+1, aij)
}
}
for i, aii := range a.mat.D {
if aii != 0 {
fn(i, i, aii)
}
}
for i, aij := range a.mat.DL {
if aij != 0 {
fn(i+1, i, aij)
}
}
}
// DoRowNonZero calls the function fn for each of the non-zero elements of row i
// of A. The function fn takes a row/column index and the element value of A at
// (i,j).
func (a *Tridiag) DoRowNonZero(i int, fn func(i, j int, v float64)) {
n := a.mat.N
if uint(i) >= uint(n) {
panic(ErrRowAccess)
}
if n == 1 {
v := a.mat.D[0]
if v != 0 {
fn(0, 0, v)
}
return
}
switch i {
case 0:
v := a.mat.D[0]
if v != 0 {
fn(i, 0, v)
}
v = a.mat.DU[0]
if v != 0 {
fn(i, 1, v)
}
case n - 1:
v := a.mat.DL[n-2]
if v != 0 {
fn(n-1, n-2, v)
}
v = a.mat.D[n-1]
if v != 0 {
fn(n-1, n-1, v)
}
default:
v := a.mat.DL[i-1]
if v != 0 {
fn(i, i-1, v)
}
v = a.mat.D[i]
if v != 0 {
fn(i, i, v)
}
v = a.mat.DU[i]
if v != 0 {
fn(i, i+1, v)
}
}
}
// DoColNonZero calls the function fn for each of the non-zero elements of
// column j of A. The function fn takes a row/column index and the element value
// of A at (i, j).
func (a *Tridiag) DoColNonZero(j int, fn func(i, j int, v float64)) {
n := a.mat.N
if uint(j) >= uint(n) {
panic(ErrColAccess)
}
if n == 1 {
v := a.mat.D[0]
if v != 0 {
fn(0, 0, v)
}
return
}
switch j {
case 0:
v := a.mat.D[0]
if v != 0 {
fn(0, 0, v)
}
v = a.mat.DL[0]
if v != 0 {
fn(1, 0, v)
}
case n - 1:
v := a.mat.DU[n-2]
if v != 0 {
fn(n-2, n-1, v)
}
v = a.mat.D[n-1]
if v != 0 {
fn(n-1, n-1, v)
}
default:
v := a.mat.DU[j-1]
if v != 0 {
fn(j-1, j, v)
}
v = a.mat.D[j]
if v != 0 {
fn(j, j, v)
}
v = a.mat.DL[j]
if v != 0 {
fn(j+1, j, v)
}
}
}
|