aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/gonum.org/v1/gonum/mat/symmetric.go
blob: e38e4c7b6fd5bca0d3f50131dbd5094f9df59882 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package mat

import (
	"math"

	"gonum.org/v1/gonum/blas"
	"gonum.org/v1/gonum/blas/blas64"
	"gonum.org/v1/gonum/lapack"
	"gonum.org/v1/gonum/lapack/lapack64"
)

var (
	symDense *SymDense

	_ Matrix           = symDense
	_ allMatrix        = symDense
	_ denseMatrix      = symDense
	_ Symmetric        = symDense
	_ RawSymmetricer   = symDense
	_ MutableSymmetric = symDense
)

const badSymTriangle = "mat: blas64.Symmetric not upper"

// SymDense is a symmetric matrix that uses dense storage. SymDense
// matrices are stored in the upper triangle.
type SymDense struct {
	mat blas64.Symmetric
	cap int
}

// Symmetric represents a symmetric matrix (where the element at {i, j} equals
// the element at {j, i}). Symmetric matrices are always square.
type Symmetric interface {
	Matrix
	// SymmetricDim returns the number of rows/columns in the matrix.
	SymmetricDim() int
}

// A RawSymmetricer can return a view of itself as a BLAS Symmetric matrix.
type RawSymmetricer interface {
	RawSymmetric() blas64.Symmetric
}

// A MutableSymmetric can set elements of a symmetric matrix.
type MutableSymmetric interface {
	Symmetric
	SetSym(i, j int, v float64)
}

// NewSymDense creates a new Symmetric matrix with n rows and columns. If data == nil,
// a new slice is allocated for the backing slice. If len(data) == n*n, data is
// used as the backing slice, and changes to the elements of the returned SymDense
// will be reflected in data. If neither of these is true, NewSymDense will panic.
// NewSymDense will panic if n is zero.
//
// The data must be arranged in row-major order, i.e. the (i*c + j)-th
// element in the data slice is the {i, j}-th element in the matrix.
// Only the values in the upper triangular portion of the matrix are used.
func NewSymDense(n int, data []float64) *SymDense {
	if n <= 0 {
		if n == 0 {
			panic(ErrZeroLength)
		}
		panic("mat: negative dimension")
	}
	if data != nil && n*n != len(data) {
		panic(ErrShape)
	}
	if data == nil {
		data = make([]float64, n*n)
	}
	return &SymDense{
		mat: blas64.Symmetric{
			N:      n,
			Stride: n,
			Data:   data,
			Uplo:   blas.Upper,
		},
		cap: n,
	}
}

// Dims returns the number of rows and columns in the matrix.
func (s *SymDense) Dims() (r, c int) {
	return s.mat.N, s.mat.N
}

// Caps returns the number of rows and columns in the backing matrix.
func (s *SymDense) Caps() (r, c int) {
	return s.cap, s.cap
}

// T returns the receiver, the transpose of a symmetric matrix.
func (s *SymDense) T() Matrix {
	return s
}

// SymmetricDim implements the Symmetric interface and returns the number of rows
// and columns in the matrix.
func (s *SymDense) SymmetricDim() int {
	return s.mat.N
}

// RawSymmetric returns the matrix as a blas64.Symmetric. The returned
// value must be stored in upper triangular format.
func (s *SymDense) RawSymmetric() blas64.Symmetric {
	return s.mat
}

// SetRawSymmetric sets the underlying blas64.Symmetric used by the receiver.
// Changes to elements in the receiver following the call will be reflected
// in the input.
//
// The supplied Symmetric must use blas.Upper storage format.
func (s *SymDense) SetRawSymmetric(mat blas64.Symmetric) {
	if mat.Uplo != blas.Upper {
		panic(badSymTriangle)
	}
	s.cap = mat.N
	s.mat = mat
}

// Reset empties the matrix so that it can be reused as the
// receiver of a dimensionally restricted operation.
//
// Reset should not be used when the matrix shares backing data.
// See the Reseter interface for more information.
func (s *SymDense) Reset() {
	// N and Stride must be zeroed in unison.
	s.mat.N, s.mat.Stride = 0, 0
	s.mat.Data = s.mat.Data[:0]
}

// ReuseAsSym changes the receiver if it IsEmpty() to be of size n×n.
//
// ReuseAsSym re-uses the backing data slice if it has sufficient capacity,
// otherwise a new slice is allocated. The backing data is zero on return.
//
// ReuseAsSym panics if the receiver is not empty, and panics if
// the input size is less than one. To empty the receiver for re-use,
// Reset should be used.
func (s *SymDense) ReuseAsSym(n int) {
	if n <= 0 {
		if n == 0 {
			panic(ErrZeroLength)
		}
		panic(ErrNegativeDimension)
	}
	if !s.IsEmpty() {
		panic(ErrReuseNonEmpty)
	}
	s.reuseAsZeroed(n)
}

// Zero sets all of the matrix elements to zero.
func (s *SymDense) Zero() {
	for i := 0; i < s.mat.N; i++ {
		zero(s.mat.Data[i*s.mat.Stride+i : i*s.mat.Stride+s.mat.N])
	}
}

// IsEmpty returns whether the receiver is empty. Empty matrices can be the
// receiver for size-restricted operations. The receiver can be emptied using
// Reset.
func (s *SymDense) IsEmpty() bool {
	// It must be the case that m.Dims() returns
	// zeros in this case. See comment in Reset().
	return s.mat.N == 0
}

// reuseAsNonZeroed resizes an empty matrix to a n×n matrix,
// or checks that a non-empty matrix is n×n.
func (s *SymDense) reuseAsNonZeroed(n int) {
	// reuseAsNonZeroed must be kept in sync with reuseAsZeroed.
	if n == 0 {
		panic(ErrZeroLength)
	}
	if s.mat.N > s.cap {
		// Panic as a string, not a mat.Error.
		panic(badCap)
	}
	if s.IsEmpty() {
		s.mat = blas64.Symmetric{
			N:      n,
			Stride: n,
			Data:   use(s.mat.Data, n*n),
			Uplo:   blas.Upper,
		}
		s.cap = n
		return
	}
	if s.mat.Uplo != blas.Upper {
		panic(badSymTriangle)
	}
	if s.mat.N != n {
		panic(ErrShape)
	}
}

// reuseAsNonZeroed resizes an empty matrix to a n×n matrix,
// or checks that a non-empty matrix is n×n. It then zeros the
// elements of the matrix.
func (s *SymDense) reuseAsZeroed(n int) {
	// reuseAsZeroed must be kept in sync with reuseAsNonZeroed.
	if n == 0 {
		panic(ErrZeroLength)
	}
	if s.mat.N > s.cap {
		// Panic as a string, not a mat.Error.
		panic(badCap)
	}
	if s.IsEmpty() {
		s.mat = blas64.Symmetric{
			N:      n,
			Stride: n,
			Data:   useZeroed(s.mat.Data, n*n),
			Uplo:   blas.Upper,
		}
		s.cap = n
		return
	}
	if s.mat.Uplo != blas.Upper {
		panic(badSymTriangle)
	}
	if s.mat.N != n {
		panic(ErrShape)
	}
	s.Zero()
}

func (s *SymDense) isolatedWorkspace(a Symmetric) (w *SymDense, restore func()) {
	n := a.SymmetricDim()
	if n == 0 {
		panic(ErrZeroLength)
	}
	w = getSymDenseWorkspace(n, false)
	return w, func() {
		s.CopySym(w)
		putSymDenseWorkspace(w)
	}
}

// DiagView returns the diagonal as a matrix backed by the original data.
func (s *SymDense) DiagView() Diagonal {
	n := s.mat.N
	return &DiagDense{
		mat: blas64.Vector{
			N:    n,
			Inc:  s.mat.Stride + 1,
			Data: s.mat.Data[:(n-1)*s.mat.Stride+n],
		},
	}
}

func (s *SymDense) AddSym(a, b Symmetric) {
	n := a.SymmetricDim()
	if n != b.SymmetricDim() {
		panic(ErrShape)
	}
	s.reuseAsNonZeroed(n)

	if a, ok := a.(RawSymmetricer); ok {
		if b, ok := b.(RawSymmetricer); ok {
			amat, bmat := a.RawSymmetric(), b.RawSymmetric()
			if s != a {
				s.checkOverlap(generalFromSymmetric(amat))
			}
			if s != b {
				s.checkOverlap(generalFromSymmetric(bmat))
			}
			for i := 0; i < n; i++ {
				btmp := bmat.Data[i*bmat.Stride+i : i*bmat.Stride+n]
				stmp := s.mat.Data[i*s.mat.Stride+i : i*s.mat.Stride+n]
				for j, v := range amat.Data[i*amat.Stride+i : i*amat.Stride+n] {
					stmp[j] = v + btmp[j]
				}
			}
			return
		}
	}

	s.checkOverlapMatrix(a)
	s.checkOverlapMatrix(b)
	for i := 0; i < n; i++ {
		stmp := s.mat.Data[i*s.mat.Stride : i*s.mat.Stride+n]
		for j := i; j < n; j++ {
			stmp[j] = a.At(i, j) + b.At(i, j)
		}
	}
}

func (s *SymDense) CopySym(a Symmetric) int {
	n := a.SymmetricDim()
	n = min(n, s.mat.N)
	if n == 0 {
		return 0
	}
	switch a := a.(type) {
	case RawSymmetricer:
		amat := a.RawSymmetric()
		if amat.Uplo != blas.Upper {
			panic(badSymTriangle)
		}
		for i := 0; i < n; i++ {
			copy(s.mat.Data[i*s.mat.Stride+i:i*s.mat.Stride+n], amat.Data[i*amat.Stride+i:i*amat.Stride+n])
		}
	default:
		for i := 0; i < n; i++ {
			stmp := s.mat.Data[i*s.mat.Stride : i*s.mat.Stride+n]
			for j := i; j < n; j++ {
				stmp[j] = a.At(i, j)
			}
		}
	}
	return n
}

// SymRankOne performs a symmetric rank-one update to the matrix a with x,
// which is treated as a column vector, and stores the result in the receiver
//
//	s = a + alpha * x * xᵀ
func (s *SymDense) SymRankOne(a Symmetric, alpha float64, x Vector) {
	n := x.Len()
	if a.SymmetricDim() != n {
		panic(ErrShape)
	}
	s.reuseAsNonZeroed(n)

	if s != a {
		if rs, ok := a.(RawSymmetricer); ok {
			s.checkOverlap(generalFromSymmetric(rs.RawSymmetric()))
		}
		s.CopySym(a)
	}

	xU, _ := untransposeExtract(x)
	if rv, ok := xU.(*VecDense); ok {
		r, c := xU.Dims()
		xmat := rv.mat
		s.checkOverlap(generalFromVector(xmat, r, c))
		blas64.Syr(alpha, xmat, s.mat)
		return
	}

	for i := 0; i < n; i++ {
		for j := i; j < n; j++ {
			s.set(i, j, s.at(i, j)+alpha*x.AtVec(i)*x.AtVec(j))
		}
	}
}

// SymRankK performs a symmetric rank-k update to the matrix a and stores the
// result into the receiver. If a is zero, see SymOuterK.
//
//	s = a + alpha * x * x'
func (s *SymDense) SymRankK(a Symmetric, alpha float64, x Matrix) {
	n := a.SymmetricDim()
	r, _ := x.Dims()
	if r != n {
		panic(ErrShape)
	}
	xMat, aTrans := untransposeExtract(x)
	var g blas64.General
	if rm, ok := xMat.(*Dense); ok {
		g = rm.mat
	} else {
		g = DenseCopyOf(x).mat
		aTrans = false
	}
	if a != s {
		if rs, ok := a.(RawSymmetricer); ok {
			s.checkOverlap(generalFromSymmetric(rs.RawSymmetric()))
		}
		s.reuseAsNonZeroed(n)
		s.CopySym(a)
	}
	t := blas.NoTrans
	if aTrans {
		t = blas.Trans
	}
	blas64.Syrk(t, alpha, g, 1, s.mat)
}

// SymOuterK calculates the outer product of x with itself and stores
// the result into the receiver. It is equivalent to the matrix
// multiplication
//
//	s = alpha * x * x'.
//
// In order to update an existing matrix, see SymRankOne.
func (s *SymDense) SymOuterK(alpha float64, x Matrix) {
	n, _ := x.Dims()
	switch {
	case s.IsEmpty():
		s.mat = blas64.Symmetric{
			N:      n,
			Stride: n,
			Data:   useZeroed(s.mat.Data, n*n),
			Uplo:   blas.Upper,
		}
		s.cap = n
		s.SymRankK(s, alpha, x)
	case s.mat.Uplo != blas.Upper:
		panic(badSymTriangle)
	case s.mat.N == n:
		if s == x {
			w := getSymDenseWorkspace(n, true)
			w.SymRankK(w, alpha, x)
			s.CopySym(w)
			putSymDenseWorkspace(w)
		} else {
			switch r := x.(type) {
			case RawMatrixer:
				s.checkOverlap(r.RawMatrix())
			case RawSymmetricer:
				s.checkOverlap(generalFromSymmetric(r.RawSymmetric()))
			case RawTriangular:
				s.checkOverlap(generalFromTriangular(r.RawTriangular()))
			}
			// Only zero the upper triangle.
			for i := 0; i < n; i++ {
				ri := i * s.mat.Stride
				zero(s.mat.Data[ri+i : ri+n])
			}
			s.SymRankK(s, alpha, x)
		}
	default:
		panic(ErrShape)
	}
}

// RankTwo performs a symmetric rank-two update to the matrix a with the
// vectors x and y, which are treated as column vectors, and stores the
// result in the receiver
//
//	m = a + alpha * (x * yᵀ + y * xᵀ)
func (s *SymDense) RankTwo(a Symmetric, alpha float64, x, y Vector) {
	n := s.mat.N
	if x.Len() != n {
		panic(ErrShape)
	}
	if y.Len() != n {
		panic(ErrShape)
	}

	if s != a {
		if rs, ok := a.(RawSymmetricer); ok {
			s.checkOverlap(generalFromSymmetric(rs.RawSymmetric()))
		}
	}

	var xmat, ymat blas64.Vector
	fast := true
	xU, _ := untransposeExtract(x)
	if rv, ok := xU.(*VecDense); ok {
		r, c := xU.Dims()
		xmat = rv.mat
		s.checkOverlap(generalFromVector(xmat, r, c))
	} else {
		fast = false
	}
	yU, _ := untransposeExtract(y)
	if rv, ok := yU.(*VecDense); ok {
		r, c := yU.Dims()
		ymat = rv.mat
		s.checkOverlap(generalFromVector(ymat, r, c))
	} else {
		fast = false
	}

	if s != a {
		if rs, ok := a.(RawSymmetricer); ok {
			s.checkOverlap(generalFromSymmetric(rs.RawSymmetric()))
		}
		s.reuseAsNonZeroed(n)
		s.CopySym(a)
	}

	if fast {
		if s != a {
			s.reuseAsNonZeroed(n)
			s.CopySym(a)
		}
		blas64.Syr2(alpha, xmat, ymat, s.mat)
		return
	}

	for i := 0; i < n; i++ {
		s.reuseAsNonZeroed(n)
		for j := i; j < n; j++ {
			s.set(i, j, a.At(i, j)+alpha*(x.AtVec(i)*y.AtVec(j)+y.AtVec(i)*x.AtVec(j)))
		}
	}
}

// ScaleSym multiplies the elements of a by f, placing the result in the receiver.
func (s *SymDense) ScaleSym(f float64, a Symmetric) {
	n := a.SymmetricDim()
	s.reuseAsNonZeroed(n)
	if a, ok := a.(RawSymmetricer); ok {
		amat := a.RawSymmetric()
		if s != a {
			s.checkOverlap(generalFromSymmetric(amat))
		}
		for i := 0; i < n; i++ {
			for j := i; j < n; j++ {
				s.mat.Data[i*s.mat.Stride+j] = f * amat.Data[i*amat.Stride+j]
			}
		}
		return
	}
	for i := 0; i < n; i++ {
		for j := i; j < n; j++ {
			s.mat.Data[i*s.mat.Stride+j] = f * a.At(i, j)
		}
	}
}

// SubsetSym extracts a subset of the rows and columns of the matrix a and stores
// the result in-place into the receiver. The resulting matrix size is
// len(set)×len(set). Specifically, at the conclusion of SubsetSym,
// s.At(i, j) equals a.At(set[i], set[j]). Note that the supplied set does not
// have to be a strict subset, dimension repeats are allowed.
func (s *SymDense) SubsetSym(a Symmetric, set []int) {
	n := len(set)
	na := a.SymmetricDim()
	s.reuseAsNonZeroed(n)
	var restore func()
	if a == s {
		s, restore = s.isolatedWorkspace(a)
		defer restore()
	}

	if a, ok := a.(RawSymmetricer); ok {
		raw := a.RawSymmetric()
		if s != a {
			s.checkOverlap(generalFromSymmetric(raw))
		}
		for i := 0; i < n; i++ {
			ssub := s.mat.Data[i*s.mat.Stride : i*s.mat.Stride+n]
			r := set[i]
			rsub := raw.Data[r*raw.Stride : r*raw.Stride+na]
			for j := i; j < n; j++ {
				c := set[j]
				if r <= c {
					ssub[j] = rsub[c]
				} else {
					ssub[j] = raw.Data[c*raw.Stride+r]
				}
			}
		}
		return
	}
	for i := 0; i < n; i++ {
		for j := i; j < n; j++ {
			s.mat.Data[i*s.mat.Stride+j] = a.At(set[i], set[j])
		}
	}
}

// SliceSym returns a new Matrix that shares backing data with the receiver.
// The returned matrix starts at {i,i} of the receiver and extends k-i rows
// and columns. The final row and column in the resulting matrix is k-1.
// SliceSym panics with ErrIndexOutOfRange if the slice is outside the
// capacity of the receiver.
func (s *SymDense) SliceSym(i, k int) Symmetric {
	return s.sliceSym(i, k)
}

func (s *SymDense) sliceSym(i, k int) *SymDense {
	sz := s.cap
	if i < 0 || sz < i || k < i || sz < k {
		panic(ErrIndexOutOfRange)
	}
	v := *s
	v.mat.Data = s.mat.Data[i*s.mat.Stride+i : (k-1)*s.mat.Stride+k]
	v.mat.N = k - i
	v.cap = s.cap - i
	return &v
}

// Norm returns the specified norm of the receiver. Valid norms are:
//
//	1 - The maximum absolute column sum
//	2 - The Frobenius norm, the square root of the sum of the squares of the elements
//	Inf - The maximum absolute row sum
//
// Norm will panic with ErrNormOrder if an illegal norm is specified and with
// ErrZeroLength if the matrix has zero size.
func (s *SymDense) Norm(norm float64) float64 {
	if s.IsEmpty() {
		panic(ErrZeroLength)
	}
	lnorm := normLapack(norm, false)
	if lnorm == lapack.MaxColumnSum || lnorm == lapack.MaxRowSum {
		work := getFloat64s(s.mat.N, false)
		defer putFloat64s(work)
		return lapack64.Lansy(lnorm, s.mat, work)
	}
	return lapack64.Lansy(lnorm, s.mat, nil)
}

// Trace returns the trace of the matrix.
//
// Trace will panic with ErrZeroLength if the matrix has zero size.
func (s *SymDense) Trace() float64 {
	if s.IsEmpty() {
		panic(ErrZeroLength)
	}
	// TODO(btracey): could use internal asm sum routine.
	var v float64
	for i := 0; i < s.mat.N; i++ {
		v += s.mat.Data[i*s.mat.Stride+i]
	}
	return v
}

// GrowSym returns the receiver expanded by n rows and n columns. If the
// dimensions of the expanded matrix are outside the capacity of the receiver
// a new allocation is made, otherwise not. Note that the receiver itself is
// not modified during the call to GrowSquare.
func (s *SymDense) GrowSym(n int) Symmetric {
	if n < 0 {
		panic(ErrIndexOutOfRange)
	}
	if n == 0 {
		return s
	}
	var v SymDense
	n += s.mat.N
	if s.IsEmpty() || n > s.cap {
		v.mat = blas64.Symmetric{
			N:      n,
			Stride: n,
			Uplo:   blas.Upper,
			Data:   make([]float64, n*n),
		}
		v.cap = n
		// Copy elements, including those not currently visible. Use a temporary
		// structure to avoid modifying the receiver.
		var tmp SymDense
		tmp.mat = blas64.Symmetric{
			N:      s.cap,
			Stride: s.mat.Stride,
			Data:   s.mat.Data,
			Uplo:   s.mat.Uplo,
		}
		tmp.cap = s.cap
		v.CopySym(&tmp)
		return &v
	}
	v.mat = blas64.Symmetric{
		N:      n,
		Stride: s.mat.Stride,
		Uplo:   blas.Upper,
		Data:   s.mat.Data[:(n-1)*s.mat.Stride+n],
	}
	v.cap = s.cap
	return &v
}

// PowPSD computes a^pow where a is a positive symmetric definite matrix.
//
// PowPSD returns an error if the matrix is not positive symmetric definite
// or the Eigen decomposition is not successful.
func (s *SymDense) PowPSD(a Symmetric, pow float64) error {
	dim := a.SymmetricDim()
	s.reuseAsNonZeroed(dim)

	var eigen EigenSym
	ok := eigen.Factorize(a, true)
	if !ok {
		return ErrFailedEigen
	}
	values := eigen.Values(nil)
	for i, v := range values {
		if v <= 0 {
			return ErrNotPSD
		}
		values[i] = math.Pow(v, pow)
	}
	var u Dense
	eigen.VectorsTo(&u)

	s.SymOuterK(values[0], u.ColView(0))

	var v VecDense
	for i := 1; i < dim; i++ {
		v.ColViewOf(&u, i)
		s.SymRankOne(s, values[i], &v)
	}
	return nil
}