1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"math/bits"
"sync"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/blas/cblas128"
)
// poolFor returns the ceiling of base 2 log of size. It provides an index
// into a pool array to a sync.Pool that will return values able to hold
// size elements.
func poolFor(size uint) int {
if size == 0 {
return 0
}
return bits.Len(size - 1)
}
var (
// poolDense contains size stratified workspace Dense pools.
// Each poolDense element i returns sized matrices with a data
// slice capped at 1<<i.
poolDense [63]sync.Pool
// poolSymDense is the SymDense equivalent of poolDense.
poolSymDense [63]sync.Pool
// poolTriDense is the TriDense equivalent of poolDense.
poolTriDense [63]sync.Pool
// poolVecDense is the VecDense equivalent of poolDense.
poolVecDense [63]sync.Pool
// poolCDense is the CDense equivalent of poolDense.
poolCDense [63]sync.Pool
// poolFloat64s is the []float64 equivalent of poolDense.
poolFloat64s [63]sync.Pool
// poolInts is the []int equivalent of poolDense.
poolInts [63]sync.Pool
)
func init() {
for i := range poolDense {
l := 1 << uint(i)
// Real matrix pools.
poolDense[i].New = func() interface{} {
return &Dense{mat: blas64.General{
Data: make([]float64, l),
}}
}
poolSymDense[i].New = func() interface{} {
return &SymDense{mat: blas64.Symmetric{
Uplo: blas.Upper,
Data: make([]float64, l),
}}
}
poolTriDense[i].New = func() interface{} {
return &TriDense{mat: blas64.Triangular{
Data: make([]float64, l),
}}
}
poolVecDense[i].New = func() interface{} {
return &VecDense{mat: blas64.Vector{
Inc: 1,
Data: make([]float64, l),
}}
}
// Complex matrix pools.
poolCDense[i].New = func() interface{} {
return &CDense{mat: cblas128.General{
Data: make([]complex128, l),
}}
}
// Helper pools.
poolFloat64s[i].New = func() interface{} {
s := make([]float64, l)
return &s
}
poolInts[i].New = func() interface{} {
s := make([]int, l)
return &s
}
}
}
// getDenseWorkspace returns a *Dense of size r×c and a data slice
// with a cap that is less than 2*r*c. If clear is true, the
// data slice visible through the Matrix interface is zeroed.
func getDenseWorkspace(r, c int, clear bool) *Dense {
l := uint(r * c)
w := poolDense[poolFor(l)].Get().(*Dense)
w.mat.Data = w.mat.Data[:l]
if clear {
zero(w.mat.Data)
}
w.mat.Rows = r
w.mat.Cols = c
w.mat.Stride = c
w.capRows = r
w.capCols = c
return w
}
// putDenseWorkspace replaces a used *Dense into the appropriate size
// workspace pool. putDenseWorkspace must not be called with a matrix
// where references to the underlying data slice have been kept.
func putDenseWorkspace(w *Dense) {
poolDense[poolFor(uint(cap(w.mat.Data)))].Put(w)
}
// getSymDenseWorkspace returns a *SymDense of size n and a cap that
// is less than 2*n. If clear is true, the data slice visible
// through the Matrix interface is zeroed.
func getSymDenseWorkspace(n int, clear bool) *SymDense {
l := uint(n)
l *= l
s := poolSymDense[poolFor(l)].Get().(*SymDense)
s.mat.Data = s.mat.Data[:l]
if clear {
zero(s.mat.Data)
}
s.mat.N = n
s.mat.Stride = n
s.cap = n
return s
}
// putSymDenseWorkspace replaces a used *SymDense into the appropriate size
// workspace pool. putSymDenseWorkspace must not be called with a matrix
// where references to the underlying data slice have been kept.
func putSymDenseWorkspace(s *SymDense) {
poolSymDense[poolFor(uint(cap(s.mat.Data)))].Put(s)
}
// getTriDenseWorkspace returns a *TriDense of size n and a cap that
// is less than 2*n. If clear is true, the data slice visible
// through the Matrix interface is zeroed.
func getTriDenseWorkspace(n int, kind TriKind, clear bool) *TriDense {
l := uint(n)
l *= l
t := poolTriDense[poolFor(l)].Get().(*TriDense)
t.mat.Data = t.mat.Data[:l]
if clear {
zero(t.mat.Data)
}
t.mat.N = n
t.mat.Stride = n
if kind == Upper {
t.mat.Uplo = blas.Upper
} else if kind == Lower {
t.mat.Uplo = blas.Lower
} else {
panic(ErrTriangle)
}
t.mat.Diag = blas.NonUnit
t.cap = n
return t
}
// putTriWorkspace replaces a used *TriDense into the appropriate size
// workspace pool. putTriWorkspace must not be called with a matrix
// where references to the underlying data slice have been kept.
func putTriWorkspace(t *TriDense) {
poolTriDense[poolFor(uint(cap(t.mat.Data)))].Put(t)
}
// getVecDenseWorkspace returns a *VecDense of length n and a cap that
// is less than 2*n. If clear is true, the data slice visible
// through the Matrix interface is zeroed.
func getVecDenseWorkspace(n int, clear bool) *VecDense {
l := uint(n)
v := poolVecDense[poolFor(l)].Get().(*VecDense)
v.mat.Data = v.mat.Data[:l]
if clear {
zero(v.mat.Data)
}
v.mat.N = n
return v
}
// putVecDenseWorkspace replaces a used *VecDense into the appropriate size
// workspace pool. putVecDenseWorkspace must not be called with a matrix
// where references to the underlying data slice have been kept.
func putVecDenseWorkspace(v *VecDense) {
poolVecDense[poolFor(uint(cap(v.mat.Data)))].Put(v)
}
// getCDenseWorkspace returns a *CDense of size r×c and a data slice
// with a cap that is less than 2*r*c. If clear is true, the
// data slice visible through the CMatrix interface is zeroed.
func getCDenseWorkspace(r, c int, clear bool) *CDense {
l := uint(r * c)
w := poolCDense[poolFor(l)].Get().(*CDense)
w.mat.Data = w.mat.Data[:l]
if clear {
zeroC(w.mat.Data)
}
w.mat.Rows = r
w.mat.Cols = c
w.mat.Stride = c
w.capRows = r
w.capCols = c
return w
}
// putCDenseWorkspace replaces a used *CDense into the appropriate size
// workspace pool. putWorkspace must not be called with a matrix
// where references to the underlying data slice have been kept.
func putCDenseWorkspace(w *CDense) {
poolCDense[poolFor(uint(cap(w.mat.Data)))].Put(w)
}
// getFloat64s returns a []float64 of length l and a cap that is
// less than 2*l. If clear is true, the slice visible is zeroed.
func getFloat64s(l int, clear bool) []float64 {
w := *poolFloat64s[poolFor(uint(l))].Get().(*[]float64)
w = w[:l]
if clear {
zero(w)
}
return w
}
// putFloat64s replaces a used []float64 into the appropriate size
// workspace pool. putFloat64s must not be called with a slice
// where references to the underlying data have been kept.
func putFloat64s(w []float64) {
poolFloat64s[poolFor(uint(cap(w)))].Put(&w)
}
// getInts returns a []int of length l and a cap that is
// less than 2*l. If clear is true, the slice visible is zeroed.
func getInts(l int, clear bool) []int {
w := *poolInts[poolFor(uint(l))].Get().(*[]int)
w = w[:l]
if clear {
for i := range w {
w[i] = 0
}
}
return w
}
// putInts replaces a used []int into the appropriate size
// workspace pool. putInts must not be called with a slice
// where references to the underlying data have been kept.
func putInts(w []int) {
poolInts[poolFor(uint(cap(w)))].Put(&w)
}
|