1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
|
// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack"
"gonum.org/v1/gonum/lapack/lapack64"
)
const badLQ = "mat: invalid LQ factorization"
// LQ is a type for creating and using the LQ factorization of a matrix.
type LQ struct {
lq *Dense
tau []float64
cond float64
}
func (lq *LQ) updateCond(norm lapack.MatrixNorm) {
// Since A = L*Q, and Q is orthogonal, we get for the condition number κ
// κ(A) := |A| |A^-1| = |L*Q| |(L*Q)^-1| = |L| |Qᵀ * L^-1|
// = |L| |L^-1| = κ(L),
// where we used that fact that Q^-1 = Qᵀ. However, this assumes that
// the matrix norm is invariant under orthogonal transformations which
// is not the case for CondNorm. Hopefully the error is negligible: κ
// is only a qualitative measure anyway.
m := lq.lq.mat.Rows
work := getFloat64s(3*m, false)
iwork := getInts(m, false)
l := lq.lq.asTriDense(m, blas.NonUnit, blas.Lower)
v := lapack64.Trcon(norm, l.mat, work, iwork)
lq.cond = 1 / v
putFloat64s(work)
putInts(iwork)
}
// Factorize computes the LQ factorization of an m×n matrix a where m <= n. The LQ
// factorization always exists even if A is singular.
//
// The LQ decomposition is a factorization of the matrix A such that A = L * Q.
// The matrix Q is an orthonormal n×n matrix, and L is an m×n lower triangular matrix.
// L and Q can be extracted using the LTo and QTo methods.
func (lq *LQ) Factorize(a Matrix) {
lq.factorize(a, CondNorm)
}
func (lq *LQ) factorize(a Matrix, norm lapack.MatrixNorm) {
m, n := a.Dims()
if m > n {
panic(ErrShape)
}
k := min(m, n)
if lq.lq == nil {
lq.lq = &Dense{}
}
lq.lq.CloneFrom(a)
work := []float64{0}
lq.tau = make([]float64, k)
lapack64.Gelqf(lq.lq.mat, lq.tau, work, -1)
work = getFloat64s(int(work[0]), false)
lapack64.Gelqf(lq.lq.mat, lq.tau, work, len(work))
putFloat64s(work)
lq.updateCond(norm)
}
// isValid returns whether the receiver contains a factorization.
func (lq *LQ) isValid() bool {
return lq.lq != nil && !lq.lq.IsEmpty()
}
// Cond returns the condition number for the factorized matrix.
// Cond will panic if the receiver does not contain a factorization.
func (lq *LQ) Cond() float64 {
if !lq.isValid() {
panic(badLQ)
}
return lq.cond
}
// TODO(btracey): Add in the "Reduced" forms for extracting the m×m orthogonal
// and upper triangular matrices.
// LTo extracts the m×n lower trapezoidal matrix from a LQ decomposition.
//
// If dst is empty, LTo will resize dst to be r×c. When dst is
// non-empty, LTo will panic if dst is not r×c. LTo will also panic
// if the receiver does not contain a successful factorization.
func (lq *LQ) LTo(dst *Dense) {
if !lq.isValid() {
panic(badLQ)
}
r, c := lq.lq.Dims()
if dst.IsEmpty() {
dst.ReuseAs(r, c)
} else {
r2, c2 := dst.Dims()
if r != r2 || c != c2 {
panic(ErrShape)
}
}
// Disguise the LQ as a lower triangular.
t := &TriDense{
mat: blas64.Triangular{
N: r,
Stride: lq.lq.mat.Stride,
Data: lq.lq.mat.Data,
Uplo: blas.Lower,
Diag: blas.NonUnit,
},
cap: lq.lq.capCols,
}
dst.Copy(t)
if r == c {
return
}
// Zero right of the triangular.
for i := 0; i < r; i++ {
zero(dst.mat.Data[i*dst.mat.Stride+r : i*dst.mat.Stride+c])
}
}
// QTo extracts the n×n orthonormal matrix Q from an LQ decomposition.
//
// If dst is empty, QTo will resize dst to be c×c. When dst is
// non-empty, QTo will panic if dst is not c×c. QTo will also panic
// if the receiver does not contain a successful factorization.
func (lq *LQ) QTo(dst *Dense) {
if !lq.isValid() {
panic(badLQ)
}
_, c := lq.lq.Dims()
if dst.IsEmpty() {
dst.ReuseAs(c, c)
} else {
r2, c2 := dst.Dims()
if c != r2 || c != c2 {
panic(ErrShape)
}
dst.Zero()
}
q := dst.mat
// Set Q = I.
ldq := q.Stride
for i := 0; i < c; i++ {
q.Data[i*ldq+i] = 1
}
// Construct Q from the elementary reflectors.
work := []float64{0}
lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, q, work, -1)
work = getFloat64s(int(work[0]), false)
lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, q, work, len(work))
putFloat64s(work)
}
// SolveTo finds a minimum-norm solution to a system of linear equations defined
// by the matrices A and b, where A is an m×n matrix represented in its LQ factorized
// form. If A is singular or near-singular a Condition error is returned.
// See the documentation for Condition for more information.
//
// The minimization problem solved depends on the input parameters.
//
// If trans == false, find the minimum norm solution of A * X = B.
// If trans == true, find X such that ||A*X - B||_2 is minimized.
//
// The solution matrix, X, is stored in place into dst.
// SolveTo will panic if the receiver does not contain a factorization.
func (lq *LQ) SolveTo(dst *Dense, trans bool, b Matrix) error {
if !lq.isValid() {
panic(badLQ)
}
r, c := lq.lq.Dims()
br, bc := b.Dims()
// The LQ solve algorithm stores the result in-place into the right hand side.
// The storage for the answer must be large enough to hold both b and x.
// However, this method's receiver must be the size of x. Copy b, and then
// copy the result into x at the end.
if trans {
if c != br {
panic(ErrShape)
}
dst.reuseAsNonZeroed(r, bc)
} else {
if r != br {
panic(ErrShape)
}
dst.reuseAsNonZeroed(c, bc)
}
// Do not need to worry about overlap between x and b because w has its own
// independent storage.
w := getDenseWorkspace(max(r, c), bc, false)
w.Copy(b)
t := lq.lq.asTriDense(lq.lq.mat.Rows, blas.NonUnit, blas.Lower).mat
if trans {
work := []float64{0}
lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, w.mat, work, -1)
work = getFloat64s(int(work[0]), false)
lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, w.mat, work, len(work))
putFloat64s(work)
ok := lapack64.Trtrs(blas.Trans, t, w.mat)
if !ok {
return Condition(math.Inf(1))
}
} else {
ok := lapack64.Trtrs(blas.NoTrans, t, w.mat)
if !ok {
return Condition(math.Inf(1))
}
for i := r; i < c; i++ {
zero(w.mat.Data[i*w.mat.Stride : i*w.mat.Stride+bc])
}
work := []float64{0}
lapack64.Ormlq(blas.Left, blas.Trans, lq.lq.mat, lq.tau, w.mat, work, -1)
work = getFloat64s(int(work[0]), false)
lapack64.Ormlq(blas.Left, blas.Trans, lq.lq.mat, lq.tau, w.mat, work, len(work))
putFloat64s(work)
}
// x was set above to be the correct size for the result.
dst.Copy(w)
putDenseWorkspace(w)
if lq.cond > ConditionTolerance {
return Condition(lq.cond)
}
return nil
}
// SolveVecTo finds a minimum-norm solution to a system of linear equations.
// See LQ.SolveTo for the full documentation.
// SolveToVec will panic if the receiver does not contain a factorization.
func (lq *LQ) SolveVecTo(dst *VecDense, trans bool, b Vector) error {
if !lq.isValid() {
panic(badLQ)
}
r, c := lq.lq.Dims()
if _, bc := b.Dims(); bc != 1 {
panic(ErrShape)
}
// The Solve implementation is non-trivial, so rather than duplicate the code,
// instead recast the VecDenses as Dense and call the matrix code.
bm := Matrix(b)
if rv, ok := b.(RawVectorer); ok {
bmat := rv.RawVector()
if dst != b {
dst.checkOverlap(bmat)
}
b := VecDense{mat: bmat}
bm = b.asDense()
}
if trans {
dst.reuseAsNonZeroed(r)
} else {
dst.reuseAsNonZeroed(c)
}
return lq.SolveTo(dst.asDense(), trans, bm)
}
|