1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
|
// Copyright ©2018 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
)
var (
diagDense *DiagDense
_ Matrix = diagDense
_ allMatrix = diagDense
_ denseMatrix = diagDense
_ Diagonal = diagDense
_ MutableDiagonal = diagDense
_ Triangular = diagDense
_ TriBanded = diagDense
_ Symmetric = diagDense
_ SymBanded = diagDense
_ Banded = diagDense
_ RawBander = diagDense
_ RawSymBander = diagDense
diag Diagonal
_ Matrix = diag
_ Diagonal = diag
_ Triangular = diag
_ TriBanded = diag
_ Symmetric = diag
_ SymBanded = diag
_ Banded = diag
)
// Diagonal represents a diagonal matrix, that is a square matrix that only
// has non-zero terms on the diagonal.
type Diagonal interface {
Matrix
// Diag returns the number of rows/columns in the matrix.
Diag() int
// The following interfaces are included in the Diagonal
// interface to allow the use of Diagonal types in
// functions operating on these types.
Banded
SymBanded
Symmetric
Triangular
TriBanded
}
// MutableDiagonal is a Diagonal matrix whose elements can be set.
type MutableDiagonal interface {
Diagonal
SetDiag(i int, v float64)
}
// DiagDense represents a diagonal matrix in dense storage format.
type DiagDense struct {
mat blas64.Vector
}
// NewDiagDense creates a new Diagonal matrix with n rows and n columns.
// The length of data must be n or data must be nil, otherwise NewDiagDense
// will panic. NewDiagDense will panic if n is zero.
func NewDiagDense(n int, data []float64) *DiagDense {
if n <= 0 {
if n == 0 {
panic(ErrZeroLength)
}
panic("mat: negative dimension")
}
if data == nil {
data = make([]float64, n)
}
if len(data) != n {
panic(ErrShape)
}
return &DiagDense{
mat: blas64.Vector{N: n, Data: data, Inc: 1},
}
}
// Diag returns the dimension of the receiver.
func (d *DiagDense) Diag() int {
return d.mat.N
}
// Dims returns the dimensions of the matrix.
func (d *DiagDense) Dims() (r, c int) {
return d.mat.N, d.mat.N
}
// T returns the transpose of the matrix.
func (d *DiagDense) T() Matrix {
return d
}
// TTri returns the transpose of the matrix. Note that Diagonal matrices are
// Upper by default.
func (d *DiagDense) TTri() Triangular {
return TransposeTri{d}
}
// TBand performs an implicit transpose by returning the receiver inside a
// TransposeBand.
func (d *DiagDense) TBand() Banded {
return TransposeBand{d}
}
// TTriBand performs an implicit transpose by returning the receiver inside a
// TransposeTriBand. Note that Diagonal matrices are Upper by default.
func (d *DiagDense) TTriBand() TriBanded {
return TransposeTriBand{d}
}
// Bandwidth returns the upper and lower bandwidths of the matrix.
// These values are always zero for diagonal matrices.
func (d *DiagDense) Bandwidth() (kl, ku int) {
return 0, 0
}
// SymmetricDim implements the Symmetric interface.
func (d *DiagDense) SymmetricDim() int {
return d.mat.N
}
// SymBand returns the number of rows/columns in the matrix, and the size of
// the bandwidth.
func (d *DiagDense) SymBand() (n, k int) {
return d.mat.N, 0
}
// Triangle implements the Triangular interface.
func (d *DiagDense) Triangle() (int, TriKind) {
return d.mat.N, Upper
}
// TriBand returns the number of rows/columns in the matrix, the
// size of the bandwidth, and the orientation. Note that Diagonal matrices are
// Upper by default.
func (d *DiagDense) TriBand() (n, k int, kind TriKind) {
return d.mat.N, 0, Upper
}
// Reset empties the matrix so that it can be reused as the
// receiver of a dimensionally restricted operation.
//
// Reset should not be used when the matrix shares backing data.
// See the Reseter interface for more information.
func (d *DiagDense) Reset() {
// No change of Inc or n to 0 may be
// made unless both are set to 0.
d.mat.Inc = 0
d.mat.N = 0
d.mat.Data = d.mat.Data[:0]
}
// Zero sets all of the matrix elements to zero.
func (d *DiagDense) Zero() {
for i := 0; i < d.mat.N; i++ {
d.mat.Data[d.mat.Inc*i] = 0
}
}
// DiagView returns the diagonal as a matrix backed by the original data.
func (d *DiagDense) DiagView() Diagonal {
return d
}
// DiagFrom copies the diagonal of m into the receiver. The receiver must
// be min(r, c) long or empty, otherwise DiagFrom will panic.
func (d *DiagDense) DiagFrom(m Matrix) {
n := min(m.Dims())
d.reuseAsNonZeroed(n)
var vec blas64.Vector
switch r := m.(type) {
case *DiagDense:
vec = r.mat
case RawBander:
mat := r.RawBand()
vec = blas64.Vector{
N: n,
Inc: mat.Stride,
Data: mat.Data[mat.KL : (n-1)*mat.Stride+mat.KL+1],
}
case RawMatrixer:
mat := r.RawMatrix()
vec = blas64.Vector{
N: n,
Inc: mat.Stride + 1,
Data: mat.Data[:(n-1)*mat.Stride+n],
}
case RawSymBander:
mat := r.RawSymBand()
vec = blas64.Vector{
N: n,
Inc: mat.Stride,
Data: mat.Data[:(n-1)*mat.Stride+1],
}
case RawSymmetricer:
mat := r.RawSymmetric()
vec = blas64.Vector{
N: n,
Inc: mat.Stride + 1,
Data: mat.Data[:(n-1)*mat.Stride+n],
}
case RawTriBander:
mat := r.RawTriBand()
data := mat.Data
if mat.Uplo == blas.Lower {
data = data[mat.K:]
}
vec = blas64.Vector{
N: n,
Inc: mat.Stride,
Data: data[:(n-1)*mat.Stride+1],
}
case RawTriangular:
mat := r.RawTriangular()
if mat.Diag == blas.Unit {
for i := 0; i < n; i += d.mat.Inc {
d.mat.Data[i] = 1
}
return
}
vec = blas64.Vector{
N: n,
Inc: mat.Stride + 1,
Data: mat.Data[:(n-1)*mat.Stride+n],
}
case RawVectorer:
d.mat.Data[0] = r.RawVector().Data[0]
return
default:
for i := 0; i < n; i++ {
d.setDiag(i, m.At(i, i))
}
return
}
blas64.Copy(vec, d.mat)
}
// RawBand returns the underlying data used by the receiver represented
// as a blas64.Band.
// Changes to elements in the receiver following the call will be reflected
// in returned blas64.Band.
func (d *DiagDense) RawBand() blas64.Band {
return blas64.Band{
Rows: d.mat.N,
Cols: d.mat.N,
KL: 0,
KU: 0,
Stride: d.mat.Inc,
Data: d.mat.Data,
}
}
// RawSymBand returns the underlying data used by the receiver represented
// as a blas64.SymmetricBand.
// Changes to elements in the receiver following the call will be reflected
// in returned blas64.Band.
func (d *DiagDense) RawSymBand() blas64.SymmetricBand {
return blas64.SymmetricBand{
N: d.mat.N,
K: 0,
Stride: d.mat.Inc,
Uplo: blas.Upper,
Data: d.mat.Data,
}
}
// reuseAsNonZeroed resizes an empty diagonal to a r×r diagonal,
// or checks that a non-empty matrix is r×r.
func (d *DiagDense) reuseAsNonZeroed(r int) {
if r == 0 {
panic(ErrZeroLength)
}
if d.IsEmpty() {
d.mat = blas64.Vector{
Inc: 1,
Data: use(d.mat.Data, r),
}
d.mat.N = r
return
}
if r != d.mat.N {
panic(ErrShape)
}
}
// IsEmpty returns whether the receiver is empty. Empty matrices can be the
// receiver for size-restricted operations. The receiver can be emptied using
// Reset.
func (d *DiagDense) IsEmpty() bool {
// It must be the case that d.Dims() returns
// zeros in this case. See comment in Reset().
return d.mat.Inc == 0
}
// Trace returns the trace of the matrix.
//
// Trace will panic with ErrZeroLength if the matrix has zero size.
func (d *DiagDense) Trace() float64 {
if d.IsEmpty() {
panic(ErrZeroLength)
}
rb := d.RawBand()
var tr float64
for i := 0; i < rb.Rows; i++ {
tr += rb.Data[rb.KL+i*rb.Stride]
}
return tr
}
// Norm returns the specified norm of the receiver. Valid norms are:
//
// 1 or Inf - The maximum diagonal element magnitude
// 2 - The Frobenius norm, the square root of the sum of the squares of
// the diagonal elements
//
// Norm will panic with ErrNormOrder if an illegal norm is specified and with
// ErrZeroLength if the receiver has zero size.
func (d *DiagDense) Norm(norm float64) float64 {
if d.IsEmpty() {
panic(ErrZeroLength)
}
switch norm {
default:
panic(ErrNormOrder)
case 1, math.Inf(1):
imax := blas64.Iamax(d.mat)
return math.Abs(d.at(imax, imax))
case 2:
return blas64.Nrm2(d.mat)
}
}
|