aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/gonum.org/v1/gonum/mat/cdense.go
blob: 86f0423c582cedc7a0601ed5aa931421eac5ab20 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
// Copyright ©2019 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package mat

import (
	"math/cmplx"

	"gonum.org/v1/gonum/blas/cblas128"
)

var (
	cDense *CDense

	_ CMatrix   = cDense
	_ allMatrix = cDense
)

// CDense is a dense matrix representation with complex data.
type CDense struct {
	mat cblas128.General

	capRows, capCols int
}

// Dims returns the number of rows and columns in the matrix.
func (m *CDense) Dims() (r, c int) {
	return m.mat.Rows, m.mat.Cols
}

// Caps returns the number of rows and columns in the backing matrix.
func (m *CDense) Caps() (r, c int) { return m.capRows, m.capCols }

// H performs an implicit conjugate transpose by returning the receiver inside a
// ConjTranspose.
func (m *CDense) H() CMatrix {
	return ConjTranspose{m}
}

// T performs an implicit transpose by returning the receiver inside a
// CTranspose.
func (m *CDense) T() CMatrix {
	return CTranspose{m}
}

// Conj calculates the element-wise conjugate of a and stores the result in the
// receiver.
// Conj will panic if m and a do not have the same dimension unless m is empty.
func (m *CDense) Conj(a CMatrix) {
	ar, ac := a.Dims()
	aU, aTrans, aConj := untransposeExtractCmplx(a)
	m.reuseAsNonZeroed(ar, ac)

	if arm, ok := a.(*CDense); ok {
		amat := arm.mat
		if m != aU {
			m.checkOverlap(amat)
		}
		for ja, jm := 0, 0; ja < ar*amat.Stride; ja, jm = ja+amat.Stride, jm+m.mat.Stride {
			for i, v := range amat.Data[ja : ja+ac] {
				m.mat.Data[i+jm] = cmplx.Conj(v)
			}
		}
		return
	}

	m.checkOverlapMatrix(aU)
	if aTrans != aConj && m == aU {
		// Only make workspace if the destination is transposed
		// with respect to the source and they are the same
		// matrix.
		var restore func()
		m, restore = m.isolatedWorkspace(aU)
		defer restore()
	}

	for r := 0; r < ar; r++ {
		for c := 0; c < ac; c++ {
			m.set(r, c, cmplx.Conj(a.At(r, c)))
		}
	}
}

// Slice returns a new CMatrix that shares backing data with the receiver.
// The returned matrix starts at {i,j} of the receiver and extends k-i rows
// and l-j columns. The final row in the resulting matrix is k-1 and the
// final column is l-1.
// Slice panics with ErrIndexOutOfRange if the slice is outside the capacity
// of the receiver.
func (m *CDense) Slice(i, k, j, l int) CMatrix {
	return m.slice(i, k, j, l)
}

func (m *CDense) slice(i, k, j, l int) *CDense {
	mr, mc := m.Caps()
	if i < 0 || mr <= i || j < 0 || mc <= j || k < i || mr < k || l < j || mc < l {
		if i == k || j == l {
			panic(ErrZeroLength)
		}
		panic(ErrIndexOutOfRange)
	}
	t := *m
	t.mat.Data = t.mat.Data[i*t.mat.Stride+j : (k-1)*t.mat.Stride+l]
	t.mat.Rows = k - i
	t.mat.Cols = l - j
	t.capRows -= i
	t.capCols -= j
	return &t
}

// NewCDense creates a new complex Dense matrix with r rows and c columns.
// If data == nil, a new slice is allocated for the backing slice.
// If len(data) == r*c, data is used as the backing slice, and changes to the
// elements of the returned CDense will be reflected in data.
// If neither of these is true, NewCDense will panic.
// NewCDense will panic if either r or c is zero.
//
// The data must be arranged in row-major order, i.e. the (i*c + j)-th
// element in the data slice is the {i, j}-th element in the matrix.
func NewCDense(r, c int, data []complex128) *CDense {
	if r <= 0 || c <= 0 {
		if r == 0 || c == 0 {
			panic(ErrZeroLength)
		}
		panic("mat: negative dimension")
	}
	if data != nil && r*c != len(data) {
		panic(ErrShape)
	}
	if data == nil {
		data = make([]complex128, r*c)
	}
	return &CDense{
		mat: cblas128.General{
			Rows:   r,
			Cols:   c,
			Stride: c,
			Data:   data,
		},
		capRows: r,
		capCols: c,
	}
}

// ReuseAs changes the receiver if it IsEmpty() to be of size r×c.
//
// ReuseAs re-uses the backing data slice if it has sufficient capacity,
// otherwise a new slice is allocated. The backing data is zero on return.
//
// ReuseAs panics if the receiver is not empty, and panics if
// the input sizes are less than one. To empty the receiver for re-use,
// Reset should be used.
func (m *CDense) ReuseAs(r, c int) {
	if r <= 0 || c <= 0 {
		if r == 0 || c == 0 {
			panic(ErrZeroLength)
		}
		panic(ErrNegativeDimension)
	}
	if !m.IsEmpty() {
		panic(ErrReuseNonEmpty)
	}
	m.reuseAsZeroed(r, c)
}

// reuseAs resizes an empty matrix to a r×c matrix,
// or checks that a non-empty matrix is r×c.
//
// reuseAs must be kept in sync with reuseAsZeroed.
func (m *CDense) reuseAsNonZeroed(r, c int) {
	if m.mat.Rows > m.capRows || m.mat.Cols > m.capCols {
		// Panic as a string, not a mat.Error.
		panic(badCap)
	}
	if r == 0 || c == 0 {
		panic(ErrZeroLength)
	}
	if m.IsEmpty() {
		m.mat = cblas128.General{
			Rows:   r,
			Cols:   c,
			Stride: c,
			Data:   useC(m.mat.Data, r*c),
		}
		m.capRows = r
		m.capCols = c
		return
	}
	if r != m.mat.Rows || c != m.mat.Cols {
		panic(ErrShape)
	}
}

func (m *CDense) reuseAsZeroed(r, c int) {
	// This must be kept in-sync with reuseAs.
	if m.mat.Rows > m.capRows || m.mat.Cols > m.capCols {
		// Panic as a string, not a mat.Error.
		panic(badCap)
	}
	if r == 0 || c == 0 {
		panic(ErrZeroLength)
	}
	if m.IsEmpty() {
		m.mat = cblas128.General{
			Rows:   r,
			Cols:   c,
			Stride: c,
			Data:   useZeroedC(m.mat.Data, r*c),
		}
		m.capRows = r
		m.capCols = c
		return
	}
	if r != m.mat.Rows || c != m.mat.Cols {
		panic(ErrShape)
	}
	m.Zero()
}

// isolatedWorkspace returns a new dense matrix w with the size of a and
// returns a callback to defer which performs cleanup at the return of the call.
// This should be used when a method receiver is the same pointer as an input argument.
func (m *CDense) isolatedWorkspace(a CMatrix) (w *CDense, restore func()) {
	r, c := a.Dims()
	if r == 0 || c == 0 {
		panic(ErrZeroLength)
	}
	w = getCDenseWorkspace(r, c, false)
	return w, func() {
		m.Copy(w)
		putCDenseWorkspace(w)
	}
}

// Reset zeros the dimensions of the matrix so that it can be reused as the
// receiver of a dimensionally restricted operation.
//
// Reset should not be used when the matrix shares backing data.
// See the Reseter interface for more information.
func (m *CDense) Reset() {
	// Row, Cols and Stride must be zeroed in unison.
	m.mat.Rows, m.mat.Cols, m.mat.Stride = 0, 0, 0
	m.capRows, m.capCols = 0, 0
	m.mat.Data = m.mat.Data[:0]
}

// IsEmpty returns whether the receiver is empty. Empty matrices can be the
// receiver for size-restricted operations. The receiver can be zeroed using Reset.
func (m *CDense) IsEmpty() bool {
	// It must be the case that m.Dims() returns
	// zeros in this case. See comment in Reset().
	return m.mat.Stride == 0
}

// Zero sets all of the matrix elements to zero.
func (m *CDense) Zero() {
	r := m.mat.Rows
	c := m.mat.Cols
	for i := 0; i < r; i++ {
		zeroC(m.mat.Data[i*m.mat.Stride : i*m.mat.Stride+c])
	}
}

// Copy makes a copy of elements of a into the receiver. It is similar to the
// built-in copy; it copies as much as the overlap between the two matrices and
// returns the number of rows and columns it copied. If a aliases the receiver
// and is a transposed Dense or VecDense, with a non-unitary increment, Copy will
// panic.
//
// See the Copier interface for more information.
func (m *CDense) Copy(a CMatrix) (r, c int) {
	r, c = a.Dims()
	if a == m {
		return r, c
	}
	r = min(r, m.mat.Rows)
	c = min(c, m.mat.Cols)
	if r == 0 || c == 0 {
		return 0, 0
	}
	// TODO(btracey): Check for overlap when complex version exists.
	// TODO(btracey): Add fast-paths.
	for i := 0; i < r; i++ {
		for j := 0; j < c; j++ {
			m.set(i, j, a.At(i, j))
		}
	}
	return r, c
}

// SetRawCMatrix sets the underlying cblas128.General used by the receiver.
// Changes to elements in the receiver following the call will be reflected
// in b.
func (m *CDense) SetRawCMatrix(b cblas128.General) {
	m.capRows, m.capCols = b.Rows, b.Cols
	m.mat = b
}

// RawCMatrix returns the underlying cblas128.General used by the receiver.
// Changes to elements in the receiver following the call will be reflected
// in returned cblas128.General.
func (m *CDense) RawCMatrix() cblas128.General { return m.mat }

// Grow returns the receiver expanded by r rows and c columns. If the dimensions
// of the expanded matrix are outside the capacities of the receiver a new
// allocation is made, otherwise not. Note the receiver itself is not modified
// during the call to Grow.
func (m *CDense) Grow(r, c int) CMatrix {
	if r < 0 || c < 0 {
		panic(ErrIndexOutOfRange)
	}
	if r == 0 && c == 0 {
		return m
	}

	r += m.mat.Rows
	c += m.mat.Cols

	var t CDense
	switch {
	case m.mat.Rows == 0 || m.mat.Cols == 0:
		t.mat = cblas128.General{
			Rows:   r,
			Cols:   c,
			Stride: c,
			// We zero because we don't know how the matrix will be used.
			// In other places, the mat is immediately filled with a result;
			// this is not the case here.
			Data: useZeroedC(m.mat.Data, r*c),
		}
	case r > m.capRows || c > m.capCols:
		cr := max(r, m.capRows)
		cc := max(c, m.capCols)
		t.mat = cblas128.General{
			Rows:   r,
			Cols:   c,
			Stride: cc,
			Data:   make([]complex128, cr*cc),
		}
		t.capRows = cr
		t.capCols = cc
		// Copy the complete matrix over to the new matrix.
		// Including elements not currently visible. Use a temporary structure
		// to avoid modifying the receiver.
		var tmp CDense
		tmp.mat = cblas128.General{
			Rows:   m.mat.Rows,
			Cols:   m.mat.Cols,
			Stride: m.mat.Stride,
			Data:   m.mat.Data,
		}
		tmp.capRows = m.capRows
		tmp.capCols = m.capCols
		t.Copy(&tmp)
		return &t
	default:
		t.mat = cblas128.General{
			Data:   m.mat.Data[:(r-1)*m.mat.Stride+c],
			Rows:   r,
			Cols:   c,
			Stride: m.mat.Stride,
		}
	}
	t.capRows = r
	t.capCols = c
	return &t
}