aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/gonum.org/v1/gonum/mat/band.go
blob: 7660cdaa8eb8a4ae006ab14db304354adf9e7aa4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package mat

import (
	"gonum.org/v1/gonum/blas"
	"gonum.org/v1/gonum/blas/blas64"
	"gonum.org/v1/gonum/lapack"
	"gonum.org/v1/gonum/lapack/lapack64"
)

var (
	bandDense *BandDense
	_         Matrix      = bandDense
	_         allMatrix   = bandDense
	_         denseMatrix = bandDense
	_         Banded      = bandDense
	_         RawBander   = bandDense

	_ NonZeroDoer    = bandDense
	_ RowNonZeroDoer = bandDense
	_ ColNonZeroDoer = bandDense
)

// BandDense represents a band matrix in dense storage format.
type BandDense struct {
	mat blas64.Band
}

// Banded is a band matrix representation.
type Banded interface {
	Matrix
	// Bandwidth returns the lower and upper bandwidth values for
	// the matrix. The total bandwidth of the matrix is kl+ku+1.
	Bandwidth() (kl, ku int)

	// TBand is the equivalent of the T() method in the Matrix
	// interface but guarantees the transpose is of banded type.
	TBand() Banded
}

// A RawBander can return a blas64.Band representation of the receiver.
// Changes to the blas64.Band.Data slice will be reflected in the original
// matrix, changes to the Rows, Cols, KL, KU and Stride fields will not.
type RawBander interface {
	RawBand() blas64.Band
}

// A MutableBanded can set elements of a band matrix.
type MutableBanded interface {
	Banded

	// SetBand sets the element at row i, column j to the value v.
	// It panics if the location is outside the appropriate region of the matrix.
	SetBand(i, j int, v float64)
}

var (
	_ Matrix            = TransposeBand{}
	_ Banded            = TransposeBand{}
	_ UntransposeBander = TransposeBand{}
)

// TransposeBand is a type for performing an implicit transpose of a band
// matrix. It implements the Banded interface, returning values from the
// transpose of the matrix within.
type TransposeBand struct {
	Banded Banded
}

// At returns the value of the element at row i and column j of the transposed
// matrix, that is, row j and column i of the Banded field.
func (t TransposeBand) At(i, j int) float64 {
	return t.Banded.At(j, i)
}

// Dims returns the dimensions of the transposed matrix.
func (t TransposeBand) Dims() (r, c int) {
	c, r = t.Banded.Dims()
	return r, c
}

// T performs an implicit transpose by returning the Banded field.
func (t TransposeBand) T() Matrix {
	return t.Banded
}

// Bandwidth returns the lower and upper bandwidth values for
// the transposed matrix.
func (t TransposeBand) Bandwidth() (kl, ku int) {
	kl, ku = t.Banded.Bandwidth()
	return ku, kl
}

// TBand performs an implicit transpose by returning the Banded field.
func (t TransposeBand) TBand() Banded {
	return t.Banded
}

// Untranspose returns the Banded field.
func (t TransposeBand) Untranspose() Matrix {
	return t.Banded
}

// UntransposeBand returns the Banded field.
func (t TransposeBand) UntransposeBand() Banded {
	return t.Banded
}

// NewBandDense creates a new Band matrix with r rows and c columns. If data == nil,
// a new slice is allocated for the backing slice. If len(data) == min(r, c+kl)*(kl+ku+1),
// data is used as the backing slice, and changes to the elements of the returned
// BandDense will be reflected in data. If neither of these is true, NewBandDense
// will panic. kl must be at least zero and less r, and ku must be at least zero and
// less than c, otherwise NewBandDense will panic.
// NewBandDense will panic if either r or c is zero.
//
// The data must be arranged in row-major order constructed by removing the zeros
// from the rows outside the band and aligning the diagonals. For example, the matrix
//
//	1  2  3  0  0  0
//	4  5  6  7  0  0
//	0  8  9 10 11  0
//	0  0 12 13 14 15
//	0  0  0 16 17 18
//	0  0  0  0 19 20
//
// becomes (* entries are never accessed)
//   - 1  2  3
//     4  5  6  7
//     8  9 10 11
//     12 13 14 15
//     16 17 18  *
//     19 20  *  *
//
// which is passed to NewBandDense as []float64{*, 1, 2, 3, 4, ...} with kl=1 and ku=2.
// Only the values in the band portion of the matrix are used.
func NewBandDense(r, c, kl, ku int, data []float64) *BandDense {
	if r <= 0 || c <= 0 || kl < 0 || ku < 0 {
		if r == 0 || c == 0 {
			panic(ErrZeroLength)
		}
		panic(ErrNegativeDimension)
	}
	if kl+1 > r || ku+1 > c {
		panic(ErrBandwidth)
	}
	bc := kl + ku + 1
	if data != nil && len(data) != min(r, c+kl)*bc {
		panic(ErrShape)
	}
	if data == nil {
		data = make([]float64, min(r, c+kl)*bc)
	}
	return &BandDense{
		mat: blas64.Band{
			Rows:   r,
			Cols:   c,
			KL:     kl,
			KU:     ku,
			Stride: bc,
			Data:   data,
		},
	}
}

// NewDiagonalRect is a convenience function that returns a diagonal matrix represented by a
// BandDense. The length of data must be min(r, c) otherwise NewDiagonalRect will panic.
func NewDiagonalRect(r, c int, data []float64) *BandDense {
	return NewBandDense(r, c, 0, 0, data)
}

// Dims returns the number of rows and columns in the matrix.
func (b *BandDense) Dims() (r, c int) {
	return b.mat.Rows, b.mat.Cols
}

// Bandwidth returns the upper and lower bandwidths of the matrix.
func (b *BandDense) Bandwidth() (kl, ku int) {
	return b.mat.KL, b.mat.KU
}

// T performs an implicit transpose by returning the receiver inside a Transpose.
func (b *BandDense) T() Matrix {
	return Transpose{b}
}

// TBand performs an implicit transpose by returning the receiver inside a TransposeBand.
func (b *BandDense) TBand() Banded {
	return TransposeBand{b}
}

// RawBand returns the underlying blas64.Band used by the receiver.
// Changes to elements in the receiver following the call will be reflected
// in returned blas64.Band.
func (b *BandDense) RawBand() blas64.Band {
	return b.mat
}

// SetRawBand sets the underlying blas64.Band used by the receiver.
// Changes to elements in the receiver following the call will be reflected
// in the input.
func (b *BandDense) SetRawBand(mat blas64.Band) {
	b.mat = mat
}

// IsEmpty returns whether the receiver is empty. Empty matrices can be the
// receiver for size-restricted operations. The receiver can be zeroed using Reset.
func (b *BandDense) IsEmpty() bool {
	return b.mat.Stride == 0
}

// Reset empties the matrix so that it can be reused as the
// receiver of a dimensionally restricted operation.
//
// Reset should not be used when the matrix shares backing data.
// See the Reseter interface for more information.
func (b *BandDense) Reset() {
	b.mat.Rows = 0
	b.mat.Cols = 0
	b.mat.KL = 0
	b.mat.KU = 0
	b.mat.Stride = 0
	b.mat.Data = b.mat.Data[:0]
}

// DiagView returns the diagonal as a matrix backed by the original data.
func (b *BandDense) DiagView() Diagonal {
	n := min(b.mat.Rows, b.mat.Cols)
	return &DiagDense{
		mat: blas64.Vector{
			N:    n,
			Inc:  b.mat.Stride,
			Data: b.mat.Data[b.mat.KL : (n-1)*b.mat.Stride+b.mat.KL+1],
		},
	}
}

// DoNonZero calls the function fn for each of the non-zero elements of b. The function fn
// takes a row/column index and the element value of b at (i, j).
func (b *BandDense) DoNonZero(fn func(i, j int, v float64)) {
	for i := 0; i < min(b.mat.Rows, b.mat.Cols+b.mat.KL); i++ {
		for j := max(0, i-b.mat.KL); j < min(b.mat.Cols, i+b.mat.KU+1); j++ {
			v := b.at(i, j)
			if v != 0 {
				fn(i, j, v)
			}
		}
	}
}

// DoRowNonZero calls the function fn for each of the non-zero elements of row i of b. The function fn
// takes a row/column index and the element value of b at (i, j).
func (b *BandDense) DoRowNonZero(i int, fn func(i, j int, v float64)) {
	if i < 0 || b.mat.Rows <= i {
		panic(ErrRowAccess)
	}
	for j := max(0, i-b.mat.KL); j < min(b.mat.Cols, i+b.mat.KU+1); j++ {
		v := b.at(i, j)
		if v != 0 {
			fn(i, j, v)
		}
	}
}

// DoColNonZero calls the function fn for each of the non-zero elements of column j of b. The function fn
// takes a row/column index and the element value of b at (i, j).
func (b *BandDense) DoColNonZero(j int, fn func(i, j int, v float64)) {
	if j < 0 || b.mat.Cols <= j {
		panic(ErrColAccess)
	}
	for i := 0; i < min(b.mat.Rows, b.mat.Cols+b.mat.KL); i++ {
		if i-b.mat.KL <= j && j < i+b.mat.KU+1 {
			v := b.at(i, j)
			if v != 0 {
				fn(i, j, v)
			}
		}
	}
}

// Zero sets all of the matrix elements to zero.
func (b *BandDense) Zero() {
	m := b.mat.Rows
	kL := b.mat.KL
	nCol := b.mat.KU + 1 + kL
	for i := 0; i < m; i++ {
		l := max(0, kL-i)
		u := min(nCol, m+kL-i)
		zero(b.mat.Data[i*b.mat.Stride+l : i*b.mat.Stride+u])
	}
}

// Norm returns the specified norm of the receiver. Valid norms are:
//
//	1 - The maximum absolute column sum
//	2 - The Frobenius norm, the square root of the sum of the squares of the elements
//	Inf - The maximum absolute row sum
//
// Norm will panic with ErrNormOrder if an illegal norm is specified and with
// ErrZeroLength if the matrix has zero size.
func (b *BandDense) Norm(norm float64) float64 {
	if b.IsEmpty() {
		panic(ErrZeroLength)
	}
	lnorm := normLapack(norm, false)
	if lnorm == lapack.MaxColumnSum || lnorm == lapack.MaxRowSum {
		return lapack64.Langb(lnorm, b.mat)
	}
	return lapack64.Langb(lnorm, b.mat)
}

// Trace returns the trace of the matrix.
//
// Trace will panic with ErrSquare if the matrix is not square and with
// ErrZeroLength if the matrix has zero size.
func (b *BandDense) Trace() float64 {
	r, c := b.Dims()
	if r != c {
		panic(ErrSquare)
	}
	if b.IsEmpty() {
		panic(ErrZeroLength)
	}
	rb := b.RawBand()
	var tr float64
	for i := 0; i < r; i++ {
		tr += rb.Data[rb.KL+i*rb.Stride]
	}
	return tr
}

// MulVecTo computes B⋅x or Bᵀ⋅x storing the result into dst.
func (b *BandDense) MulVecTo(dst *VecDense, trans bool, x Vector) {
	m, n := b.Dims()
	if trans {
		m, n = n, m
	}
	if x.Len() != n {
		panic(ErrShape)
	}
	dst.reuseAsNonZeroed(m)

	t := blas.NoTrans
	if trans {
		t = blas.Trans
	}

	xMat, _ := untransposeExtract(x)
	if xVec, ok := xMat.(*VecDense); ok {
		if dst != xVec {
			dst.checkOverlap(xVec.mat)
			blas64.Gbmv(t, 1, b.mat, xVec.mat, 0, dst.mat)
		} else {
			xCopy := getVecDenseWorkspace(n, false)
			xCopy.CloneFromVec(xVec)
			blas64.Gbmv(t, 1, b.mat, xCopy.mat, 0, dst.mat)
			putVecDenseWorkspace(xCopy)
		}
	} else {
		xCopy := getVecDenseWorkspace(n, false)
		xCopy.CloneFromVec(x)
		blas64.Gbmv(t, 1, b.mat, xCopy.mat, 0, dst.mat)
		putVecDenseWorkspace(xCopy)
	}
}