1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math32
import (
"math"
)
const (
unan = 0x7fc00000
uinf = 0x7f800000
uneginf = 0xff800000
mask = 0x7f8 >> 3
shift = 32 - 8 - 1
bias = 127
)
// Abs returns the absolute value of x.
//
// Special cases are:
//
// Abs(±Inf) = +Inf
// Abs(NaN) = NaN
func Abs(x float32) float32 {
switch {
case x < 0:
return -x
case x == 0:
return 0 // return correctly abs(-0)
}
return x
}
// Copysign returns a value with the magnitude
// of x and the sign of y.
func Copysign(x, y float32) float32 {
const sign = 1 << 31
return math.Float32frombits(math.Float32bits(x)&^sign | math.Float32bits(y)&sign)
}
// Hypot returns Sqrt(p*p + q*q), taking care to avoid
// unnecessary overflow and underflow.
//
// Special cases are:
//
// Hypot(±Inf, q) = +Inf
// Hypot(p, ±Inf) = +Inf
// Hypot(NaN, q) = NaN
// Hypot(p, NaN) = NaN
func Hypot(p, q float32) float32 {
// special cases
switch {
case IsInf(p, 0) || IsInf(q, 0):
return Inf(1)
case IsNaN(p) || IsNaN(q):
return NaN()
}
if p < 0 {
p = -p
}
if q < 0 {
q = -q
}
if p < q {
p, q = q, p
}
if p == 0 {
return 0
}
q = q / p
return p * Sqrt(1+q*q)
}
// Inf returns positive infinity if sign >= 0, negative infinity if sign < 0.
func Inf(sign int) float32 {
var v uint32
if sign >= 0 {
v = uinf
} else {
v = uneginf
}
return math.Float32frombits(v)
}
// IsInf reports whether f is an infinity, according to sign.
// If sign > 0, IsInf reports whether f is positive infinity.
// If sign < 0, IsInf reports whether f is negative infinity.
// If sign == 0, IsInf reports whether f is either infinity.
func IsInf(f float32, sign int) bool {
// Test for infinity by comparing against maximum float.
// To avoid the floating-point hardware, could use:
// x := math.Float32bits(f);
// return sign >= 0 && x == uinf || sign <= 0 && x == uneginf;
return sign >= 0 && f > math.MaxFloat32 || sign <= 0 && f < -math.MaxFloat32
}
// IsNaN reports whether f is an IEEE 754 “not-a-number” value.
func IsNaN(f float32) (is bool) {
// IEEE 754 says that only NaNs satisfy f != f.
// To avoid the floating-point hardware, could use:
// x := math.Float32bits(f);
// return uint32(x>>shift)&mask == mask && x != uinf && x != uneginf
return f != f
}
// Max returns the larger of x or y.
//
// Special cases are:
//
// Max(x, +Inf) = Max(+Inf, x) = +Inf
// Max(x, NaN) = Max(NaN, x) = NaN
// Max(+0, ±0) = Max(±0, +0) = +0
// Max(-0, -0) = -0
func Max(x, y float32) float32 {
// special cases
switch {
case IsInf(x, 1) || IsInf(y, 1):
return Inf(1)
case IsNaN(x) || IsNaN(y):
return NaN()
case x == 0 && x == y:
if Signbit(x) {
return y
}
return x
}
if x > y {
return x
}
return y
}
// Min returns the smaller of x or y.
//
// Special cases are:
//
// Min(x, -Inf) = Min(-Inf, x) = -Inf
// Min(x, NaN) = Min(NaN, x) = NaN
// Min(-0, ±0) = Min(±0, -0) = -0
func Min(x, y float32) float32 {
// special cases
switch {
case IsInf(x, -1) || IsInf(y, -1):
return Inf(-1)
case IsNaN(x) || IsNaN(y):
return NaN()
case x == 0 && x == y:
if Signbit(x) {
return x
}
return y
}
if x < y {
return x
}
return y
}
// NaN returns an IEEE 754 “not-a-number” value.
func NaN() float32 { return math.Float32frombits(unan) }
|