1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
|
// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this code is governed by a BSD-style
// license that can be found in the LICENSE file.
package floats
import (
"errors"
"math"
"sort"
"gonum.org/v1/gonum/floats/scalar"
"gonum.org/v1/gonum/internal/asm/f64"
)
const (
zeroLength = "floats: zero length slice"
shortSpan = "floats: slice length less than 2"
badLength = "floats: slice lengths do not match"
badDstLength = "floats: destination slice length does not match input"
)
// Add adds, element-wise, the elements of s and dst, and stores the result in dst.
// It panics if the argument lengths do not match.
func Add(dst, s []float64) {
if len(dst) != len(s) {
panic(badDstLength)
}
f64.AxpyUnitaryTo(dst, 1, s, dst)
}
// AddTo adds, element-wise, the elements of s and t and
// stores the result in dst.
// It panics if the argument lengths do not match.
func AddTo(dst, s, t []float64) []float64 {
if len(s) != len(t) {
panic(badLength)
}
if len(dst) != len(s) {
panic(badDstLength)
}
f64.AxpyUnitaryTo(dst, 1, s, t)
return dst
}
// AddConst adds the scalar c to all of the values in dst.
func AddConst(c float64, dst []float64) {
f64.AddConst(c, dst)
}
// AddScaled performs dst = dst + alpha * s.
// It panics if the slice argument lengths do not match.
func AddScaled(dst []float64, alpha float64, s []float64) {
if len(dst) != len(s) {
panic(badLength)
}
f64.AxpyUnitaryTo(dst, alpha, s, dst)
}
// AddScaledTo performs dst = y + alpha * s, where alpha is a scalar,
// and dst, y and s are all slices.
// It panics if the slice argument lengths do not match.
//
// At the return of the function, dst[i] = y[i] + alpha * s[i]
func AddScaledTo(dst, y []float64, alpha float64, s []float64) []float64 {
if len(s) != len(y) {
panic(badLength)
}
if len(dst) != len(y) {
panic(badDstLength)
}
f64.AxpyUnitaryTo(dst, alpha, s, y)
return dst
}
// argsort is a helper that implements sort.Interface, as used by
// Argsort and ArgsortStable.
type argsort struct {
s []float64
inds []int
}
func (a argsort) Len() int {
return len(a.s)
}
func (a argsort) Less(i, j int) bool {
return a.s[i] < a.s[j]
}
func (a argsort) Swap(i, j int) {
a.s[i], a.s[j] = a.s[j], a.s[i]
a.inds[i], a.inds[j] = a.inds[j], a.inds[i]
}
// Argsort sorts the elements of dst while tracking their original order.
// At the conclusion of Argsort, dst will contain the original elements of dst
// but sorted in increasing order, and inds will contain the original position
// of the elements in the slice such that dst[i] = origDst[inds[i]].
// It panics if the argument lengths do not match.
func Argsort(dst []float64, inds []int) {
if len(dst) != len(inds) {
panic(badDstLength)
}
for i := range dst {
inds[i] = i
}
a := argsort{s: dst, inds: inds}
sort.Sort(a)
}
// ArgsortStable sorts the elements of dst while tracking their original order and
// keeping the original order of equal elements. At the conclusion of ArgsortStable,
// dst will contain the original elements of dst but sorted in increasing order,
// and inds will contain the original position of the elements in the slice such
// that dst[i] = origDst[inds[i]].
// It panics if the argument lengths do not match.
func ArgsortStable(dst []float64, inds []int) {
if len(dst) != len(inds) {
panic(badDstLength)
}
for i := range dst {
inds[i] = i
}
a := argsort{s: dst, inds: inds}
sort.Stable(a)
}
// Count applies the function f to every element of s and returns the number
// of times the function returned true.
func Count(f func(float64) bool, s []float64) int {
var n int
for _, val := range s {
if f(val) {
n++
}
}
return n
}
// CumProd finds the cumulative product of the first i elements in
// s and puts them in place into the ith element of the
// destination dst.
// It panics if the argument lengths do not match.
//
// At the return of the function, dst[i] = s[i] * s[i-1] * s[i-2] * ...
func CumProd(dst, s []float64) []float64 {
if len(dst) != len(s) {
panic(badDstLength)
}
if len(dst) == 0 {
return dst
}
return f64.CumProd(dst, s)
}
// CumSum finds the cumulative sum of the first i elements in
// s and puts them in place into the ith element of the
// destination dst.
// It panics if the argument lengths do not match.
//
// At the return of the function, dst[i] = s[i] + s[i-1] + s[i-2] + ...
func CumSum(dst, s []float64) []float64 {
if len(dst) != len(s) {
panic(badDstLength)
}
if len(dst) == 0 {
return dst
}
return f64.CumSum(dst, s)
}
// Distance computes the L-norm of s - t. See Norm for special cases.
// It panics if the slice argument lengths do not match.
func Distance(s, t []float64, L float64) float64 {
if len(s) != len(t) {
panic(badLength)
}
if len(s) == 0 {
return 0
}
if L == 2 {
return f64.L2DistanceUnitary(s, t)
}
var norm float64
if L == 1 {
for i, v := range s {
norm += math.Abs(t[i] - v)
}
return norm
}
if math.IsInf(L, 1) {
for i, v := range s {
absDiff := math.Abs(t[i] - v)
if absDiff > norm {
norm = absDiff
}
}
return norm
}
for i, v := range s {
norm += math.Pow(math.Abs(t[i]-v), L)
}
return math.Pow(norm, 1/L)
}
// Div performs element-wise division dst / s
// and stores the value in dst.
// It panics if the argument lengths do not match.
func Div(dst, s []float64) {
if len(dst) != len(s) {
panic(badLength)
}
f64.Div(dst, s)
}
// DivTo performs element-wise division s / t
// and stores the value in dst.
// It panics if the argument lengths do not match.
func DivTo(dst, s, t []float64) []float64 {
if len(s) != len(t) {
panic(badLength)
}
if len(dst) != len(s) {
panic(badDstLength)
}
return f64.DivTo(dst, s, t)
}
// Dot computes the dot product of s1 and s2, i.e.
// sum_{i = 1}^N s1[i]*s2[i].
// It panics if the argument lengths do not match.
func Dot(s1, s2 []float64) float64 {
if len(s1) != len(s2) {
panic(badLength)
}
return f64.DotUnitary(s1, s2)
}
// Equal returns true when the slices have equal lengths and
// all elements are numerically identical.
func Equal(s1, s2 []float64) bool {
if len(s1) != len(s2) {
return false
}
for i, val := range s1 {
if s2[i] != val {
return false
}
}
return true
}
// EqualApprox returns true when the slices have equal lengths and
// all element pairs have an absolute tolerance less than tol or a
// relative tolerance less than tol.
func EqualApprox(s1, s2 []float64, tol float64) bool {
if len(s1) != len(s2) {
return false
}
for i, a := range s1 {
if !scalar.EqualWithinAbsOrRel(a, s2[i], tol, tol) {
return false
}
}
return true
}
// EqualFunc returns true when the slices have the same lengths
// and the function returns true for all element pairs.
func EqualFunc(s1, s2 []float64, f func(float64, float64) bool) bool {
if len(s1) != len(s2) {
return false
}
for i, val := range s1 {
if !f(val, s2[i]) {
return false
}
}
return true
}
// EqualLengths returns true when all of the slices have equal length,
// and false otherwise. It also returns true when there are no input slices.
func EqualLengths(slices ...[]float64) bool {
// This length check is needed: http://play.golang.org/p/sdty6YiLhM
if len(slices) == 0 {
return true
}
l := len(slices[0])
for i := 1; i < len(slices); i++ {
if len(slices[i]) != l {
return false
}
}
return true
}
// Find applies f to every element of s and returns the indices of the first
// k elements for which the f returns true, or all such elements
// if k < 0.
// Find will reslice inds to have 0 length, and will append
// found indices to inds.
// If k > 0 and there are fewer than k elements in s satisfying f,
// all of the found elements will be returned along with an error.
// At the return of the function, the input inds will be in an undetermined state.
func Find(inds []int, f func(float64) bool, s []float64, k int) ([]int, error) {
// inds is also returned to allow for calling with nil.
// Reslice inds to have zero length.
inds = inds[:0]
// If zero elements requested, can just return.
if k == 0 {
return inds, nil
}
// If k < 0, return all of the found indices.
if k < 0 {
for i, val := range s {
if f(val) {
inds = append(inds, i)
}
}
return inds, nil
}
// Otherwise, find the first k elements.
nFound := 0
for i, val := range s {
if f(val) {
inds = append(inds, i)
nFound++
if nFound == k {
return inds, nil
}
}
}
// Finished iterating over the loop, which means k elements were not found.
return inds, errors.New("floats: insufficient elements found")
}
// HasNaN returns true when the slice s has any values that are NaN and false
// otherwise.
func HasNaN(s []float64) bool {
for _, v := range s {
if math.IsNaN(v) {
return true
}
}
return false
}
// LogSpan returns a set of n equally spaced points in log space between,
// l and u where N is equal to len(dst). The first element of the
// resulting dst will be l and the final element of dst will be u.
// It panics if the length of dst is less than 2.
// Note that this call will return NaNs if either l or u are negative, and
// will return all zeros if l or u is zero.
// Also returns the mutated slice dst, so that it can be used in range, like:
//
// for i, x := range LogSpan(dst, l, u) { ... }
func LogSpan(dst []float64, l, u float64) []float64 {
Span(dst, math.Log(l), math.Log(u))
for i := range dst {
dst[i] = math.Exp(dst[i])
}
return dst
}
// LogSumExp returns the log of the sum of the exponentials of the values in s.
// Panics if s is an empty slice.
func LogSumExp(s []float64) float64 {
// Want to do this in a numerically stable way which avoids
// overflow and underflow
// First, find the maximum value in the slice.
maxval := Max(s)
if math.IsInf(maxval, 0) {
// If it's infinity either way, the logsumexp will be infinity as well
// returning now avoids NaNs
return maxval
}
var lse float64
// Compute the sumexp part
for _, val := range s {
lse += math.Exp(val - maxval)
}
// Take the log and add back on the constant taken out
return math.Log(lse) + maxval
}
// Max returns the maximum value in the input slice. If the slice is empty, Max will panic.
func Max(s []float64) float64 {
return s[MaxIdx(s)]
}
// MaxIdx returns the index of the maximum value in the input slice. If several
// entries have the maximum value, the first such index is returned.
// It panics if s is zero length.
func MaxIdx(s []float64) int {
if len(s) == 0 {
panic(zeroLength)
}
max := math.NaN()
var ind int
for i, v := range s {
if math.IsNaN(v) {
continue
}
if v > max || math.IsNaN(max) {
max = v
ind = i
}
}
return ind
}
// Min returns the minimum value in the input slice.
// It panics if s is zero length.
func Min(s []float64) float64 {
return s[MinIdx(s)]
}
// MinIdx returns the index of the minimum value in the input slice. If several
// entries have the minimum value, the first such index is returned.
// It panics if s is zero length.
func MinIdx(s []float64) int {
if len(s) == 0 {
panic(zeroLength)
}
min := math.NaN()
var ind int
for i, v := range s {
if math.IsNaN(v) {
continue
}
if v < min || math.IsNaN(min) {
min = v
ind = i
}
}
return ind
}
// Mul performs element-wise multiplication between dst
// and s and stores the value in dst.
// It panics if the argument lengths do not match.
func Mul(dst, s []float64) {
if len(dst) != len(s) {
panic(badLength)
}
for i, val := range s {
dst[i] *= val
}
}
// MulTo performs element-wise multiplication between s
// and t and stores the value in dst.
// It panics if the argument lengths do not match.
func MulTo(dst, s, t []float64) []float64 {
if len(s) != len(t) {
panic(badLength)
}
if len(dst) != len(s) {
panic(badDstLength)
}
for i, val := range t {
dst[i] = val * s[i]
}
return dst
}
// NearestIdx returns the index of the element in s
// whose value is nearest to v. If several such
// elements exist, the lowest index is returned.
// It panics if s is zero length.
func NearestIdx(s []float64, v float64) int {
if len(s) == 0 {
panic(zeroLength)
}
switch {
case math.IsNaN(v):
return 0
case math.IsInf(v, 1):
return MaxIdx(s)
case math.IsInf(v, -1):
return MinIdx(s)
}
var ind int
dist := math.NaN()
for i, val := range s {
newDist := math.Abs(v - val)
// A NaN distance will not be closer.
if math.IsNaN(newDist) {
continue
}
if newDist < dist || math.IsNaN(dist) {
dist = newDist
ind = i
}
}
return ind
}
// NearestIdxForSpan return the index of a hypothetical vector created
// by Span with length n and bounds l and u whose value is closest
// to v. That is, NearestIdxForSpan(n, l, u, v) is equivalent to
// Nearest(Span(make([]float64, n),l,u),v) without an allocation.
// It panics if n is less than two.
func NearestIdxForSpan(n int, l, u float64, v float64) int {
if n < 2 {
panic(shortSpan)
}
if math.IsNaN(v) {
return 0
}
// Special cases for Inf and NaN.
switch {
case math.IsNaN(l) && !math.IsNaN(u):
return n - 1
case math.IsNaN(u):
return 0
case math.IsInf(l, 0) && math.IsInf(u, 0):
if l == u {
return 0
}
if n%2 == 1 {
if !math.IsInf(v, 0) {
return n / 2
}
if math.Copysign(1, v) == math.Copysign(1, l) {
return 0
}
return n/2 + 1
}
if math.Copysign(1, v) == math.Copysign(1, l) {
return 0
}
return n / 2
case math.IsInf(l, 0):
if v == l {
return 0
}
return n - 1
case math.IsInf(u, 0):
if v == u {
return n - 1
}
return 0
case math.IsInf(v, -1):
if l <= u {
return 0
}
return n - 1
case math.IsInf(v, 1):
if u <= l {
return 0
}
return n - 1
}
// Special cases for v outside (l, u) and (u, l).
switch {
case l < u:
if v <= l {
return 0
}
if v >= u {
return n - 1
}
case l > u:
if v >= l {
return 0
}
if v <= u {
return n - 1
}
default:
return 0
}
// Can't guarantee anything about exactly halfway between
// because of floating point weirdness.
return int((float64(n)-1)/(u-l)*(v-l) + 0.5)
}
// Norm returns the L norm of the slice S, defined as
// (sum_{i=1}^N s[i]^L)^{1/L}
// Special cases:
// L = math.Inf(1) gives the maximum absolute value.
// Does not correctly compute the zero norm (use Count).
func Norm(s []float64, L float64) float64 {
// Should this complain if L is not positive?
// Should this be done in log space for better numerical stability?
// would be more cost
// maybe only if L is high?
if len(s) == 0 {
return 0
}
if L == 2 {
return f64.L2NormUnitary(s)
}
var norm float64
if L == 1 {
for _, val := range s {
norm += math.Abs(val)
}
return norm
}
if math.IsInf(L, 1) {
for _, val := range s {
norm = math.Max(norm, math.Abs(val))
}
return norm
}
for _, val := range s {
norm += math.Pow(math.Abs(val), L)
}
return math.Pow(norm, 1/L)
}
// Prod returns the product of the elements of the slice.
// Returns 1 if len(s) = 0.
func Prod(s []float64) float64 {
prod := 1.0
for _, val := range s {
prod *= val
}
return prod
}
// Reverse reverses the order of elements in the slice.
func Reverse(s []float64) {
for i, j := 0, len(s)-1; i < j; i, j = i+1, j-1 {
s[i], s[j] = s[j], s[i]
}
}
// Same returns true when the input slices have the same length and all
// elements have the same value with NaN treated as the same.
func Same(s, t []float64) bool {
if len(s) != len(t) {
return false
}
for i, v := range s {
w := t[i]
if v != w && !(math.IsNaN(v) && math.IsNaN(w)) {
return false
}
}
return true
}
// Scale multiplies every element in dst by the scalar c.
func Scale(c float64, dst []float64) {
if len(dst) > 0 {
f64.ScalUnitary(c, dst)
}
}
// ScaleTo multiplies the elements in s by c and stores the result in dst.
// It panics if the slice argument lengths do not match.
func ScaleTo(dst []float64, c float64, s []float64) []float64 {
if len(dst) != len(s) {
panic(badDstLength)
}
if len(dst) > 0 {
f64.ScalUnitaryTo(dst, c, s)
}
return dst
}
// Span returns a set of N equally spaced points between l and u, where N
// is equal to the length of the destination. The first element of the destination
// is l, the final element of the destination is u.
// It panics if the length of dst is less than 2.
//
// Span also returns the mutated slice dst, so that it can be used in range expressions,
// like:
//
// for i, x := range Span(dst, l, u) { ... }
func Span(dst []float64, l, u float64) []float64 {
n := len(dst)
if n < 2 {
panic(shortSpan)
}
// Special cases for Inf and NaN.
switch {
case math.IsNaN(l):
for i := range dst[:len(dst)-1] {
dst[i] = math.NaN()
}
dst[len(dst)-1] = u
return dst
case math.IsNaN(u):
for i := range dst[1:] {
dst[i+1] = math.NaN()
}
dst[0] = l
return dst
case math.IsInf(l, 0) && math.IsInf(u, 0):
for i := range dst[:len(dst)/2] {
dst[i] = l
dst[len(dst)-i-1] = u
}
if len(dst)%2 == 1 {
if l != u {
dst[len(dst)/2] = 0
} else {
dst[len(dst)/2] = l
}
}
return dst
case math.IsInf(l, 0):
for i := range dst[:len(dst)-1] {
dst[i] = l
}
dst[len(dst)-1] = u
return dst
case math.IsInf(u, 0):
for i := range dst[1:] {
dst[i+1] = u
}
dst[0] = l
return dst
}
step := (u - l) / float64(n-1)
for i := range dst {
dst[i] = l + step*float64(i)
}
return dst
}
// Sub subtracts, element-wise, the elements of s from dst.
// It panics if the argument lengths do not match.
func Sub(dst, s []float64) {
if len(dst) != len(s) {
panic(badLength)
}
f64.AxpyUnitaryTo(dst, -1, s, dst)
}
// SubTo subtracts, element-wise, the elements of t from s and
// stores the result in dst.
// It panics if the argument lengths do not match.
func SubTo(dst, s, t []float64) []float64 {
if len(s) != len(t) {
panic(badLength)
}
if len(dst) != len(s) {
panic(badDstLength)
}
f64.AxpyUnitaryTo(dst, -1, t, s)
return dst
}
// Sum returns the sum of the elements of the slice.
func Sum(s []float64) float64 {
return f64.Sum(s)
}
// Within returns the first index i where s[i] <= v < s[i+1]. Within panics if:
// - len(s) < 2
// - s is not sorted
func Within(s []float64, v float64) int {
if len(s) < 2 {
panic(shortSpan)
}
if !sort.Float64sAreSorted(s) {
panic("floats: input slice not sorted")
}
if v < s[0] || v >= s[len(s)-1] || math.IsNaN(v) {
return -1
}
for i, f := range s[1:] {
if v < f {
return i
}
}
return -1
}
// SumCompensated returns the sum of the elements of the slice calculated with greater
// accuracy than Sum at the expense of additional computation.
func SumCompensated(s []float64) float64 {
// SumCompensated uses an improved version of Kahan's compensated
// summation algorithm proposed by Neumaier.
// See https://en.wikipedia.org/wiki/Kahan_summation_algorithm for details.
var sum, c float64
for _, x := range s {
// This type conversion is here to prevent a sufficiently smart compiler
// from optimising away these operations.
t := float64(sum + x)
if math.Abs(sum) >= math.Abs(x) {
c += (sum - t) + x
} else {
c += (x - t) + sum
}
sum = t
}
return sum + c
}
|