1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
|
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package blas64
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/gonum"
)
var blas64 blas.Float64 = gonum.Implementation{}
// Use sets the BLAS float64 implementation to be used by subsequent BLAS calls.
// The default implementation is
// gonum.org/v1/gonum/blas/gonum.Implementation.
func Use(b blas.Float64) {
blas64 = b
}
// Implementation returns the current BLAS float64 implementation.
//
// Implementation allows direct calls to the current the BLAS float64 implementation
// giving finer control of parameters.
func Implementation() blas.Float64 {
return blas64
}
// Vector represents a vector with an associated element increment.
type Vector struct {
N int
Data []float64
Inc int
}
// General represents a matrix using the conventional storage scheme.
type General struct {
Rows, Cols int
Data []float64
Stride int
}
// Band represents a band matrix using the band storage scheme.
type Band struct {
Rows, Cols int
KL, KU int
Data []float64
Stride int
}
// Triangular represents a triangular matrix using the conventional storage scheme.
type Triangular struct {
Uplo blas.Uplo
Diag blas.Diag
N int
Data []float64
Stride int
}
// TriangularBand represents a triangular matrix using the band storage scheme.
type TriangularBand struct {
Uplo blas.Uplo
Diag blas.Diag
N, K int
Data []float64
Stride int
}
// TriangularPacked represents a triangular matrix using the packed storage scheme.
type TriangularPacked struct {
Uplo blas.Uplo
Diag blas.Diag
N int
Data []float64
}
// Symmetric represents a symmetric matrix using the conventional storage scheme.
type Symmetric struct {
Uplo blas.Uplo
N int
Data []float64
Stride int
}
// SymmetricBand represents a symmetric matrix using the band storage scheme.
type SymmetricBand struct {
Uplo blas.Uplo
N, K int
Data []float64
Stride int
}
// SymmetricPacked represents a symmetric matrix using the packed storage scheme.
type SymmetricPacked struct {
Uplo blas.Uplo
N int
Data []float64
}
// Level 1
const (
negInc = "blas64: negative vector increment"
badLength = "blas64: vector length mismatch"
)
// Dot computes the dot product of the two vectors:
//
// \sum_i x[i]*y[i].
//
// Dot will panic if the lengths of x and y do not match.
func Dot(x, y Vector) float64 {
if x.N != y.N {
panic(badLength)
}
return blas64.Ddot(x.N, x.Data, x.Inc, y.Data, y.Inc)
}
// Nrm2 computes the Euclidean norm of the vector x:
//
// sqrt(\sum_i x[i]*x[i]).
//
// Nrm2 will panic if the vector increment is negative.
func Nrm2(x Vector) float64 {
if x.Inc < 0 {
panic(negInc)
}
return blas64.Dnrm2(x.N, x.Data, x.Inc)
}
// Asum computes the sum of the absolute values of the elements of x:
//
// \sum_i |x[i]|.
//
// Asum will panic if the vector increment is negative.
func Asum(x Vector) float64 {
if x.Inc < 0 {
panic(negInc)
}
return blas64.Dasum(x.N, x.Data, x.Inc)
}
// Iamax returns the index of an element of x with the largest absolute value.
// If there are multiple such indices the earliest is returned.
// Iamax returns -1 if n == 0.
//
// Iamax will panic if the vector increment is negative.
func Iamax(x Vector) int {
if x.Inc < 0 {
panic(negInc)
}
return blas64.Idamax(x.N, x.Data, x.Inc)
}
// Swap exchanges the elements of the two vectors:
//
// x[i], y[i] = y[i], x[i] for all i.
//
// Swap will panic if the lengths of x and y do not match.
func Swap(x, y Vector) {
if x.N != y.N {
panic(badLength)
}
blas64.Dswap(x.N, x.Data, x.Inc, y.Data, y.Inc)
}
// Copy copies the elements of x into the elements of y:
//
// y[i] = x[i] for all i.
//
// Copy will panic if the lengths of x and y do not match.
func Copy(x, y Vector) {
if x.N != y.N {
panic(badLength)
}
blas64.Dcopy(x.N, x.Data, x.Inc, y.Data, y.Inc)
}
// Axpy adds x scaled by alpha to y:
//
// y[i] += alpha*x[i] for all i.
//
// Axpy will panic if the lengths of x and y do not match.
func Axpy(alpha float64, x, y Vector) {
if x.N != y.N {
panic(badLength)
}
blas64.Daxpy(x.N, alpha, x.Data, x.Inc, y.Data, y.Inc)
}
// Rotg computes the parameters of a Givens plane rotation so that
//
// ⎡ c s⎤ ⎡a⎤ ⎡r⎤
// ⎣-s c⎦ * ⎣b⎦ = ⎣0⎦
//
// where a and b are the Cartesian coordinates of a given point.
// c, s, and r are defined as
//
// r = ±Sqrt(a^2 + b^2),
// c = a/r, the cosine of the rotation angle,
// s = a/r, the sine of the rotation angle,
//
// and z is defined such that
//
// if |a| > |b|, z = s,
// otherwise if c != 0, z = 1/c,
// otherwise z = 1.
func Rotg(a, b float64) (c, s, r, z float64) {
return blas64.Drotg(a, b)
}
// Rotmg computes the modified Givens rotation. See
// http://www.netlib.org/lapack/explore-html/df/deb/drotmg_8f.html
// for more details.
func Rotmg(d1, d2, b1, b2 float64) (p blas.DrotmParams, rd1, rd2, rb1 float64) {
return blas64.Drotmg(d1, d2, b1, b2)
}
// Rot applies a plane transformation to n points represented by the vectors x
// and y:
//
// x[i] = c*x[i] + s*y[i],
// y[i] = -s*x[i] + c*y[i], for all i.
func Rot(x, y Vector, c, s float64) {
if x.N != y.N {
panic(badLength)
}
blas64.Drot(x.N, x.Data, x.Inc, y.Data, y.Inc, c, s)
}
// Rotm applies the modified Givens rotation to n points represented by the
// vectors x and y.
func Rotm(x, y Vector, p blas.DrotmParams) {
if x.N != y.N {
panic(badLength)
}
blas64.Drotm(x.N, x.Data, x.Inc, y.Data, y.Inc, p)
}
// Scal scales the vector x by alpha:
//
// x[i] *= alpha for all i.
//
// Scal will panic if the vector increment is negative.
func Scal(alpha float64, x Vector) {
if x.Inc < 0 {
panic(negInc)
}
blas64.Dscal(x.N, alpha, x.Data, x.Inc)
}
// Level 2
// Gemv computes
//
// y = alpha * A * x + beta * y if t == blas.NoTrans,
// y = alpha * Aᵀ * x + beta * y if t == blas.Trans or blas.ConjTrans,
//
// where A is an m×n dense matrix, x and y are vectors, and alpha and beta are scalars.
func Gemv(t blas.Transpose, alpha float64, a General, x Vector, beta float64, y Vector) {
blas64.Dgemv(t, a.Rows, a.Cols, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
}
// Gbmv computes
//
// y = alpha * A * x + beta * y if t == blas.NoTrans,
// y = alpha * Aᵀ * x + beta * y if t == blas.Trans or blas.ConjTrans,
//
// where A is an m×n band matrix, x and y are vectors, and alpha and beta are scalars.
func Gbmv(t blas.Transpose, alpha float64, a Band, x Vector, beta float64, y Vector) {
blas64.Dgbmv(t, a.Rows, a.Cols, a.KL, a.KU, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
}
// Trmv computes
//
// x = A * x if t == blas.NoTrans,
// x = Aᵀ * x if t == blas.Trans or blas.ConjTrans,
//
// where A is an n×n triangular matrix, and x is a vector.
func Trmv(t blas.Transpose, a Triangular, x Vector) {
blas64.Dtrmv(a.Uplo, t, a.Diag, a.N, a.Data, a.Stride, x.Data, x.Inc)
}
// Tbmv computes
//
// x = A * x if t == blas.NoTrans,
// x = Aᵀ * x if t == blas.Trans or blas.ConjTrans,
//
// where A is an n×n triangular band matrix, and x is a vector.
func Tbmv(t blas.Transpose, a TriangularBand, x Vector) {
blas64.Dtbmv(a.Uplo, t, a.Diag, a.N, a.K, a.Data, a.Stride, x.Data, x.Inc)
}
// Tpmv computes
//
// x = A * x if t == blas.NoTrans,
// x = Aᵀ * x if t == blas.Trans or blas.ConjTrans,
//
// where A is an n×n triangular matrix in packed format, and x is a vector.
func Tpmv(t blas.Transpose, a TriangularPacked, x Vector) {
blas64.Dtpmv(a.Uplo, t, a.Diag, a.N, a.Data, x.Data, x.Inc)
}
// Trsv solves
//
// A * x = b if t == blas.NoTrans,
// Aᵀ * x = b if t == blas.Trans or blas.ConjTrans,
//
// where A is an n×n triangular matrix, and x and b are vectors.
//
// At entry to the function, x contains the values of b, and the result is
// stored in-place into x.
//
// No test for singularity or near-singularity is included in this
// routine. Such tests must be performed before calling this routine.
func Trsv(t blas.Transpose, a Triangular, x Vector) {
blas64.Dtrsv(a.Uplo, t, a.Diag, a.N, a.Data, a.Stride, x.Data, x.Inc)
}
// Tbsv solves
//
// A * x = b if t == blas.NoTrans,
// Aᵀ * x = b if t == blas.Trans or blas.ConjTrans,
//
// where A is an n×n triangular band matrix, and x and b are vectors.
//
// At entry to the function, x contains the values of b, and the result is
// stored in place into x.
//
// No test for singularity or near-singularity is included in this
// routine. Such tests must be performed before calling this routine.
func Tbsv(t blas.Transpose, a TriangularBand, x Vector) {
blas64.Dtbsv(a.Uplo, t, a.Diag, a.N, a.K, a.Data, a.Stride, x.Data, x.Inc)
}
// Tpsv solves
//
// A * x = b if t == blas.NoTrans,
// Aᵀ * x = b if t == blas.Trans or blas.ConjTrans,
//
// where A is an n×n triangular matrix in packed format, and x and b are
// vectors.
//
// At entry to the function, x contains the values of b, and the result is
// stored in place into x.
//
// No test for singularity or near-singularity is included in this
// routine. Such tests must be performed before calling this routine.
func Tpsv(t blas.Transpose, a TriangularPacked, x Vector) {
blas64.Dtpsv(a.Uplo, t, a.Diag, a.N, a.Data, x.Data, x.Inc)
}
// Symv computes
//
// y = alpha * A * x + beta * y,
//
// where A is an n×n symmetric matrix, x and y are vectors, and alpha and
// beta are scalars.
func Symv(alpha float64, a Symmetric, x Vector, beta float64, y Vector) {
blas64.Dsymv(a.Uplo, a.N, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
}
// Sbmv performs
//
// y = alpha * A * x + beta * y,
//
// where A is an n×n symmetric band matrix, x and y are vectors, and alpha
// and beta are scalars.
func Sbmv(alpha float64, a SymmetricBand, x Vector, beta float64, y Vector) {
blas64.Dsbmv(a.Uplo, a.N, a.K, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
}
// Spmv performs
//
// y = alpha * A * x + beta * y,
//
// where A is an n×n symmetric matrix in packed format, x and y are vectors,
// and alpha and beta are scalars.
func Spmv(alpha float64, a SymmetricPacked, x Vector, beta float64, y Vector) {
blas64.Dspmv(a.Uplo, a.N, alpha, a.Data, x.Data, x.Inc, beta, y.Data, y.Inc)
}
// Ger performs a rank-1 update
//
// A += alpha * x * yᵀ,
//
// where A is an m×n dense matrix, x and y are vectors, and alpha is a scalar.
func Ger(alpha float64, x, y Vector, a General) {
blas64.Dger(a.Rows, a.Cols, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data, a.Stride)
}
// Syr performs a rank-1 update
//
// A += alpha * x * xᵀ,
//
// where A is an n×n symmetric matrix, x is a vector, and alpha is a scalar.
func Syr(alpha float64, x Vector, a Symmetric) {
blas64.Dsyr(a.Uplo, a.N, alpha, x.Data, x.Inc, a.Data, a.Stride)
}
// Spr performs the rank-1 update
//
// A += alpha * x * xᵀ,
//
// where A is an n×n symmetric matrix in packed format, x is a vector, and
// alpha is a scalar.
func Spr(alpha float64, x Vector, a SymmetricPacked) {
blas64.Dspr(a.Uplo, a.N, alpha, x.Data, x.Inc, a.Data)
}
// Syr2 performs a rank-2 update
//
// A += alpha * x * yᵀ + alpha * y * xᵀ,
//
// where A is a symmetric n×n matrix, x and y are vectors, and alpha is a scalar.
func Syr2(alpha float64, x, y Vector, a Symmetric) {
blas64.Dsyr2(a.Uplo, a.N, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data, a.Stride)
}
// Spr2 performs a rank-2 update
//
// A += alpha * x * yᵀ + alpha * y * xᵀ,
//
// where A is an n×n symmetric matrix in packed format, x and y are vectors,
// and alpha is a scalar.
func Spr2(alpha float64, x, y Vector, a SymmetricPacked) {
blas64.Dspr2(a.Uplo, a.N, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data)
}
// Level 3
// Gemm computes
//
// C = alpha * A * B + beta * C,
//
// where A, B, and C are dense matrices, and alpha and beta are scalars.
// tA and tB specify whether A or B are transposed.
func Gemm(tA, tB blas.Transpose, alpha float64, a, b General, beta float64, c General) {
var m, n, k int
if tA == blas.NoTrans {
m, k = a.Rows, a.Cols
} else {
m, k = a.Cols, a.Rows
}
if tB == blas.NoTrans {
n = b.Cols
} else {
n = b.Rows
}
blas64.Dgemm(tA, tB, m, n, k, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
}
// Symm performs
//
// C = alpha * A * B + beta * C if s == blas.Left,
// C = alpha * B * A + beta * C if s == blas.Right,
//
// where A is an n×n or m×m symmetric matrix, B and C are m×n matrices, and
// alpha is a scalar.
func Symm(s blas.Side, alpha float64, a Symmetric, b General, beta float64, c General) {
var m, n int
if s == blas.Left {
m, n = a.N, b.Cols
} else {
m, n = b.Rows, a.N
}
blas64.Dsymm(s, a.Uplo, m, n, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
}
// Syrk performs a symmetric rank-k update
//
// C = alpha * A * Aᵀ + beta * C if t == blas.NoTrans,
// C = alpha * Aᵀ * A + beta * C if t == blas.Trans or blas.ConjTrans,
//
// where C is an n×n symmetric matrix, A is an n×k matrix if t == blas.NoTrans and
// a k×n matrix otherwise, and alpha and beta are scalars.
func Syrk(t blas.Transpose, alpha float64, a General, beta float64, c Symmetric) {
var n, k int
if t == blas.NoTrans {
n, k = a.Rows, a.Cols
} else {
n, k = a.Cols, a.Rows
}
blas64.Dsyrk(c.Uplo, t, n, k, alpha, a.Data, a.Stride, beta, c.Data, c.Stride)
}
// Syr2k performs a symmetric rank-2k update
//
// C = alpha * A * Bᵀ + alpha * B * Aᵀ + beta * C if t == blas.NoTrans,
// C = alpha * Aᵀ * B + alpha * Bᵀ * A + beta * C if t == blas.Trans or blas.ConjTrans,
//
// where C is an n×n symmetric matrix, A and B are n×k matrices if t == NoTrans
// and k×n matrices otherwise, and alpha and beta are scalars.
func Syr2k(t blas.Transpose, alpha float64, a, b General, beta float64, c Symmetric) {
var n, k int
if t == blas.NoTrans {
n, k = a.Rows, a.Cols
} else {
n, k = a.Cols, a.Rows
}
blas64.Dsyr2k(c.Uplo, t, n, k, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
}
// Trmm performs
//
// B = alpha * A * B if tA == blas.NoTrans and s == blas.Left,
// B = alpha * Aᵀ * B if tA == blas.Trans or blas.ConjTrans, and s == blas.Left,
// B = alpha * B * A if tA == blas.NoTrans and s == blas.Right,
// B = alpha * B * Aᵀ if tA == blas.Trans or blas.ConjTrans, and s == blas.Right,
//
// where A is an n×n or m×m triangular matrix, B is an m×n matrix, and alpha is
// a scalar.
func Trmm(s blas.Side, tA blas.Transpose, alpha float64, a Triangular, b General) {
blas64.Dtrmm(s, a.Uplo, tA, a.Diag, b.Rows, b.Cols, alpha, a.Data, a.Stride, b.Data, b.Stride)
}
// Trsm solves
//
// A * X = alpha * B if tA == blas.NoTrans and s == blas.Left,
// Aᵀ * X = alpha * B if tA == blas.Trans or blas.ConjTrans, and s == blas.Left,
// X * A = alpha * B if tA == blas.NoTrans and s == blas.Right,
// X * Aᵀ = alpha * B if tA == blas.Trans or blas.ConjTrans, and s == blas.Right,
//
// where A is an n×n or m×m triangular matrix, X and B are m×n matrices, and
// alpha is a scalar.
//
// At entry to the function, X contains the values of B, and the result is
// stored in-place into X.
//
// No check is made that A is invertible.
func Trsm(s blas.Side, tA blas.Transpose, alpha float64, a Triangular, b General) {
blas64.Dtrsm(s, a.Uplo, tA, a.Diag, b.Rows, b.Cols, alpha, a.Data, a.Stride, b.Data, b.Stride)
}
|