1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
|
package xxh3
import (
"encoding/binary"
"hash"
)
// Hasher implements the hash.Hash interface
type Hasher struct {
acc [8]u64
blk u64
len u64
key ptr
buf [_block + _stripe]byte
seed u64
}
var (
_ hash.Hash = (*Hasher)(nil)
_ hash.Hash64 = (*Hasher)(nil)
)
// New returns a new Hasher that implements the hash.Hash interface.
func New() *Hasher {
return new(Hasher)
}
// NewSeed returns a new Hasher that implements the hash.Hash interface.
func NewSeed(seed uint64) *Hasher {
var h Hasher
h.Reset()
h.seed = seed
h.key = key
// Only initiate once, not on reset.
if seed != 0 {
h.key = ptr(&[secretSize]byte{})
initSecret(h.key, seed)
}
return &h
}
// Reset resets the Hash to its initial state.
func (h *Hasher) Reset() {
h.acc = [8]u64{
prime32_3, prime64_1, prime64_2, prime64_3,
prime64_4, prime32_2, prime64_5, prime32_1,
}
h.blk = 0
h.len = 0
}
// BlockSize returns the hash's underlying block size.
// The Write method will accept any amount of data, but
// it may operate more efficiently if all writes are a
// multiple of the block size.
func (h *Hasher) BlockSize() int { return _stripe }
// Size returns the number of bytes Sum will return.
func (h *Hasher) Size() int { return 8 }
// Sum appends the current hash to b and returns the resulting slice.
// It does not change the underlying hash state.
func (h *Hasher) Sum(b []byte) []byte {
var tmp [8]byte
binary.BigEndian.PutUint64(tmp[:], h.Sum64())
return append(b, tmp[:]...)
}
// Write adds more data to the running hash.
// It never returns an error.
func (h *Hasher) Write(buf []byte) (int, error) {
h.update(buf)
return len(buf), nil
}
// WriteString adds more data to the running hash.
// It never returns an error.
func (h *Hasher) WriteString(buf string) (int, error) {
h.updateString(buf)
return len(buf), nil
}
func (h *Hasher) update(buf []byte) {
// relies on the data pointer being the first word in the string header
h.updateString(*(*string)(ptr(&buf)))
}
func (h *Hasher) updateString(buf string) {
if h.key == nil {
h.key = key
h.Reset()
}
// On first write, if more than 1 block, process without copy.
for h.len == 0 && len(buf) > len(h.buf) {
if hasAVX2 {
accumBlockAVX2(&h.acc, *(*ptr)(ptr(&buf)), h.key)
} else if hasSSE2 {
accumBlockSSE(&h.acc, *(*ptr)(ptr(&buf)), h.key)
} else {
accumBlockScalar(&h.acc, *(*ptr)(ptr(&buf)), h.key)
}
buf = buf[_block:]
h.blk++
}
for len(buf) > 0 {
if h.len < u64(len(h.buf)) {
n := copy(h.buf[h.len:], buf)
h.len += u64(n)
buf = buf[n:]
continue
}
if hasAVX2 {
accumBlockAVX2(&h.acc, ptr(&h.buf), h.key)
} else if hasSSE2 {
accumBlockSSE(&h.acc, ptr(&h.buf), h.key)
} else {
accumBlockScalar(&h.acc, ptr(&h.buf), h.key)
}
h.blk++
h.len = _stripe
copy(h.buf[:_stripe], h.buf[_block:])
}
}
// Sum64 returns the 64-bit hash of the written data.
func (h *Hasher) Sum64() uint64 {
if h.key == nil {
h.key = key
h.Reset()
}
if h.blk == 0 {
if h.seed == 0 {
return Hash(h.buf[:h.len])
}
return HashSeed(h.buf[:h.len], h.seed)
}
l := h.blk*_block + h.len
acc := l * prime64_1
accs := h.acc
if h.len > 0 {
// We are only ever doing 1 block here, so no avx512.
if hasAVX2 {
accumAVX2(&accs, ptr(&h.buf[0]), h.key, h.len)
} else if hasSSE2 {
accumSSE(&accs, ptr(&h.buf[0]), h.key, h.len)
} else {
accumScalar(&accs, ptr(&h.buf[0]), h.key, h.len)
}
}
if h.seed == 0 {
acc += mulFold64(accs[0]^key64_011, accs[1]^key64_019)
acc += mulFold64(accs[2]^key64_027, accs[3]^key64_035)
acc += mulFold64(accs[4]^key64_043, accs[5]^key64_051)
acc += mulFold64(accs[6]^key64_059, accs[7]^key64_067)
} else {
secret := h.key
acc += mulFold64(accs[0]^readU64(secret, 11), accs[1]^readU64(secret, 19))
acc += mulFold64(accs[2]^readU64(secret, 27), accs[3]^readU64(secret, 35))
acc += mulFold64(accs[4]^readU64(secret, 43), accs[5]^readU64(secret, 51))
acc += mulFold64(accs[6]^readU64(secret, 59), accs[7]^readU64(secret, 67))
}
acc = xxh3Avalanche(acc)
return acc
}
// Sum128 returns the 128-bit hash of the written data.
func (h *Hasher) Sum128() Uint128 {
if h.key == nil {
h.key = key
h.Reset()
}
if h.blk == 0 {
if h.seed == 0 {
return Hash128(h.buf[:h.len])
}
return Hash128Seed(h.buf[:h.len], h.seed)
}
l := h.blk*_block + h.len
acc := Uint128{Lo: l * prime64_1, Hi: ^(l * prime64_2)}
accs := h.acc
if h.len > 0 {
// We are only ever doing 1 block here, so no avx512.
if hasAVX2 {
accumAVX2(&accs, ptr(&h.buf[0]), h.key, h.len)
} else if hasSSE2 {
accumSSE(&accs, ptr(&h.buf[0]), h.key, h.len)
} else {
accumScalar(&accs, ptr(&h.buf[0]), h.key, h.len)
}
}
if h.seed == 0 {
acc.Lo += mulFold64(accs[0]^key64_011, accs[1]^key64_019)
acc.Hi += mulFold64(accs[0]^key64_117, accs[1]^key64_125)
acc.Lo += mulFold64(accs[2]^key64_027, accs[3]^key64_035)
acc.Hi += mulFold64(accs[2]^key64_133, accs[3]^key64_141)
acc.Lo += mulFold64(accs[4]^key64_043, accs[5]^key64_051)
acc.Hi += mulFold64(accs[4]^key64_149, accs[5]^key64_157)
acc.Lo += mulFold64(accs[6]^key64_059, accs[7]^key64_067)
acc.Hi += mulFold64(accs[6]^key64_165, accs[7]^key64_173)
} else {
secret := h.key
const hi_off = 117 - 11
acc.Lo += mulFold64(accs[0]^readU64(secret, 11), accs[1]^readU64(secret, 19))
acc.Hi += mulFold64(accs[0]^readU64(secret, 11+hi_off), accs[1]^readU64(secret, 19+hi_off))
acc.Lo += mulFold64(accs[2]^readU64(secret, 27), accs[3]^readU64(secret, 35))
acc.Hi += mulFold64(accs[2]^readU64(secret, 27+hi_off), accs[3]^readU64(secret, 35+hi_off))
acc.Lo += mulFold64(accs[4]^readU64(secret, 43), accs[5]^readU64(secret, 51))
acc.Hi += mulFold64(accs[4]^readU64(secret, 43+hi_off), accs[5]^readU64(secret, 51+hi_off))
acc.Lo += mulFold64(accs[6]^readU64(secret, 59), accs[7]^readU64(secret, 67))
acc.Hi += mulFold64(accs[6]^readU64(secret, 59+hi_off), accs[7]^readU64(secret, 67+hi_off))
}
acc.Lo = xxh3Avalanche(acc.Lo)
acc.Hi = xxh3Avalanche(acc.Hi)
return acc
}
|