1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
|
// Package decimal implements an arbitrary precision fixed-point decimal.
//
// The zero-value of a Decimal is 0, as you would expect.
//
// The best way to create a new Decimal is to use decimal.NewFromString, ex:
//
// n, err := decimal.NewFromString("-123.4567")
// n.String() // output: "-123.4567"
//
// To use Decimal as part of a struct:
//
// type Struct struct {
// Number Decimal
// }
//
// Note: This can "only" represent numbers with a maximum of 2^31 digits after the decimal point.
package decimal
import (
"database/sql/driver"
"encoding/binary"
"fmt"
"math"
"math/big"
"regexp"
"strconv"
"strings"
)
// DivisionPrecision is the number of decimal places in the result when it
// doesn't divide exactly.
//
// Example:
//
// d1 := decimal.NewFromFloat(2).Div(decimal.NewFromFloat(3))
// d1.String() // output: "0.6666666666666667"
// d2 := decimal.NewFromFloat(2).Div(decimal.NewFromFloat(30000))
// d2.String() // output: "0.0000666666666667"
// d3 := decimal.NewFromFloat(20000).Div(decimal.NewFromFloat(3))
// d3.String() // output: "6666.6666666666666667"
// decimal.DivisionPrecision = 3
// d4 := decimal.NewFromFloat(2).Div(decimal.NewFromFloat(3))
// d4.String() // output: "0.667"
//
var DivisionPrecision = 16
// MarshalJSONWithoutQuotes should be set to true if you want the decimal to
// be JSON marshaled as a number, instead of as a string.
// WARNING: this is dangerous for decimals with many digits, since many JSON
// unmarshallers (ex: Javascript's) will unmarshal JSON numbers to IEEE 754
// double-precision floating point numbers, which means you can potentially
// silently lose precision.
var MarshalJSONWithoutQuotes = false
// ExpMaxIterations specifies the maximum number of iterations needed to calculate
// precise natural exponent value using ExpHullAbrham method.
var ExpMaxIterations = 1000
// Zero constant, to make computations faster.
// Zero should never be compared with == or != directly, please use decimal.Equal or decimal.Cmp instead.
var Zero = New(0, 1)
var zeroInt = big.NewInt(0)
var oneInt = big.NewInt(1)
var twoInt = big.NewInt(2)
var fourInt = big.NewInt(4)
var fiveInt = big.NewInt(5)
var tenInt = big.NewInt(10)
var twentyInt = big.NewInt(20)
var factorials = []Decimal{New(1, 0)}
// Decimal represents a fixed-point decimal. It is immutable.
// number = value * 10 ^ exp
type Decimal struct {
value *big.Int
// NOTE(vadim): this must be an int32, because we cast it to float64 during
// calculations. If exp is 64 bit, we might lose precision.
// If we cared about being able to represent every possible decimal, we
// could make exp a *big.Int but it would hurt performance and numbers
// like that are unrealistic.
exp int32
}
// New returns a new fixed-point decimal, value * 10 ^ exp.
func New(value int64, exp int32) Decimal {
return Decimal{
value: big.NewInt(value),
exp: exp,
}
}
// NewFromInt converts a int64 to Decimal.
//
// Example:
//
// NewFromInt(123).String() // output: "123"
// NewFromInt(-10).String() // output: "-10"
func NewFromInt(value int64) Decimal {
return Decimal{
value: big.NewInt(value),
exp: 0,
}
}
// NewFromInt32 converts a int32 to Decimal.
//
// Example:
//
// NewFromInt(123).String() // output: "123"
// NewFromInt(-10).String() // output: "-10"
func NewFromInt32(value int32) Decimal {
return Decimal{
value: big.NewInt(int64(value)),
exp: 0,
}
}
// NewFromBigInt returns a new Decimal from a big.Int, value * 10 ^ exp
func NewFromBigInt(value *big.Int, exp int32) Decimal {
return Decimal{
value: new(big.Int).Set(value),
exp: exp,
}
}
// NewFromString returns a new Decimal from a string representation.
// Trailing zeroes are not trimmed.
//
// Example:
//
// d, err := NewFromString("-123.45")
// d2, err := NewFromString(".0001")
// d3, err := NewFromString("1.47000")
//
func NewFromString(value string) (Decimal, error) {
originalInput := value
var intString string
var exp int64
// Check if number is using scientific notation
eIndex := strings.IndexAny(value, "Ee")
if eIndex != -1 {
expInt, err := strconv.ParseInt(value[eIndex+1:], 10, 32)
if err != nil {
if e, ok := err.(*strconv.NumError); ok && e.Err == strconv.ErrRange {
return Decimal{}, fmt.Errorf("can't convert %s to decimal: fractional part too long", value)
}
return Decimal{}, fmt.Errorf("can't convert %s to decimal: exponent is not numeric", value)
}
value = value[:eIndex]
exp = expInt
}
pIndex := -1
vLen := len(value)
for i := 0; i < vLen; i++ {
if value[i] == '.' {
if pIndex > -1 {
return Decimal{}, fmt.Errorf("can't convert %s to decimal: too many .s", value)
}
pIndex = i
}
}
if pIndex == -1 {
// There is no decimal point, we can just parse the original string as
// an int
intString = value
} else {
if pIndex+1 < vLen {
intString = value[:pIndex] + value[pIndex+1:]
} else {
intString = value[:pIndex]
}
expInt := -len(value[pIndex+1:])
exp += int64(expInt)
}
var dValue *big.Int
// strconv.ParseInt is faster than new(big.Int).SetString so this is just a shortcut for strings we know won't overflow
if len(intString) <= 18 {
parsed64, err := strconv.ParseInt(intString, 10, 64)
if err != nil {
return Decimal{}, fmt.Errorf("can't convert %s to decimal", value)
}
dValue = big.NewInt(parsed64)
} else {
dValue = new(big.Int)
_, ok := dValue.SetString(intString, 10)
if !ok {
return Decimal{}, fmt.Errorf("can't convert %s to decimal", value)
}
}
if exp < math.MinInt32 || exp > math.MaxInt32 {
// NOTE(vadim): I doubt a string could realistically be this long
return Decimal{}, fmt.Errorf("can't convert %s to decimal: fractional part too long", originalInput)
}
return Decimal{
value: dValue,
exp: int32(exp),
}, nil
}
// NewFromFormattedString returns a new Decimal from a formatted string representation.
// The second argument - replRegexp, is a regular expression that is used to find characters that should be
// removed from given decimal string representation. All matched characters will be replaced with an empty string.
//
// Example:
//
// r := regexp.MustCompile("[$,]")
// d1, err := NewFromFormattedString("$5,125.99", r)
//
// r2 := regexp.MustCompile("[_]")
// d2, err := NewFromFormattedString("1_000_000", r2)
//
// r3 := regexp.MustCompile("[USD\\s]")
// d3, err := NewFromFormattedString("5000 USD", r3)
//
func NewFromFormattedString(value string, replRegexp *regexp.Regexp) (Decimal, error) {
parsedValue := replRegexp.ReplaceAllString(value, "")
d, err := NewFromString(parsedValue)
if err != nil {
return Decimal{}, err
}
return d, nil
}
// RequireFromString returns a new Decimal from a string representation
// or panics if NewFromString would have returned an error.
//
// Example:
//
// d := RequireFromString("-123.45")
// d2 := RequireFromString(".0001")
//
func RequireFromString(value string) Decimal {
dec, err := NewFromString(value)
if err != nil {
panic(err)
}
return dec
}
// NewFromFloat converts a float64 to Decimal.
//
// The converted number will contain the number of significant digits that can be
// represented in a float with reliable roundtrip.
// This is typically 15 digits, but may be more in some cases.
// See https://www.exploringbinary.com/decimal-precision-of-binary-floating-point-numbers/ for more information.
//
// For slightly faster conversion, use NewFromFloatWithExponent where you can specify the precision in absolute terms.
//
// NOTE: this will panic on NaN, +/-inf
func NewFromFloat(value float64) Decimal {
if value == 0 {
return New(0, 0)
}
return newFromFloat(value, math.Float64bits(value), &float64info)
}
// NewFromFloat32 converts a float32 to Decimal.
//
// The converted number will contain the number of significant digits that can be
// represented in a float with reliable roundtrip.
// This is typically 6-8 digits depending on the input.
// See https://www.exploringbinary.com/decimal-precision-of-binary-floating-point-numbers/ for more information.
//
// For slightly faster conversion, use NewFromFloatWithExponent where you can specify the precision in absolute terms.
//
// NOTE: this will panic on NaN, +/-inf
func NewFromFloat32(value float32) Decimal {
if value == 0 {
return New(0, 0)
}
// XOR is workaround for https://github.com/golang/go/issues/26285
a := math.Float32bits(value) ^ 0x80808080
return newFromFloat(float64(value), uint64(a)^0x80808080, &float32info)
}
func newFromFloat(val float64, bits uint64, flt *floatInfo) Decimal {
if math.IsNaN(val) || math.IsInf(val, 0) {
panic(fmt.Sprintf("Cannot create a Decimal from %v", val))
}
exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1)
mant := bits & (uint64(1)<<flt.mantbits - 1)
switch exp {
case 0:
// denormalized
exp++
default:
// add implicit top bit
mant |= uint64(1) << flt.mantbits
}
exp += flt.bias
var d decimal
d.Assign(mant)
d.Shift(exp - int(flt.mantbits))
d.neg = bits>>(flt.expbits+flt.mantbits) != 0
roundShortest(&d, mant, exp, flt)
// If less than 19 digits, we can do calculation in an int64.
if d.nd < 19 {
tmp := int64(0)
m := int64(1)
for i := d.nd - 1; i >= 0; i-- {
tmp += m * int64(d.d[i]-'0')
m *= 10
}
if d.neg {
tmp *= -1
}
return Decimal{value: big.NewInt(tmp), exp: int32(d.dp) - int32(d.nd)}
}
dValue := new(big.Int)
dValue, ok := dValue.SetString(string(d.d[:d.nd]), 10)
if ok {
return Decimal{value: dValue, exp: int32(d.dp) - int32(d.nd)}
}
return NewFromFloatWithExponent(val, int32(d.dp)-int32(d.nd))
}
// NewFromFloatWithExponent converts a float64 to Decimal, with an arbitrary
// number of fractional digits.
//
// Example:
//
// NewFromFloatWithExponent(123.456, -2).String() // output: "123.46"
//
func NewFromFloatWithExponent(value float64, exp int32) Decimal {
if math.IsNaN(value) || math.IsInf(value, 0) {
panic(fmt.Sprintf("Cannot create a Decimal from %v", value))
}
bits := math.Float64bits(value)
mant := bits & (1<<52 - 1)
exp2 := int32((bits >> 52) & (1<<11 - 1))
sign := bits >> 63
if exp2 == 0 {
// specials
if mant == 0 {
return Decimal{}
}
// subnormal
exp2++
} else {
// normal
mant |= 1 << 52
}
exp2 -= 1023 + 52
// normalizing base-2 values
for mant&1 == 0 {
mant = mant >> 1
exp2++
}
// maximum number of fractional base-10 digits to represent 2^N exactly cannot be more than -N if N<0
if exp < 0 && exp < exp2 {
if exp2 < 0 {
exp = exp2
} else {
exp = 0
}
}
// representing 10^M * 2^N as 5^M * 2^(M+N)
exp2 -= exp
temp := big.NewInt(1)
dMant := big.NewInt(int64(mant))
// applying 5^M
if exp > 0 {
temp = temp.SetInt64(int64(exp))
temp = temp.Exp(fiveInt, temp, nil)
} else if exp < 0 {
temp = temp.SetInt64(-int64(exp))
temp = temp.Exp(fiveInt, temp, nil)
dMant = dMant.Mul(dMant, temp)
temp = temp.SetUint64(1)
}
// applying 2^(M+N)
if exp2 > 0 {
dMant = dMant.Lsh(dMant, uint(exp2))
} else if exp2 < 0 {
temp = temp.Lsh(temp, uint(-exp2))
}
// rounding and downscaling
if exp > 0 || exp2 < 0 {
halfDown := new(big.Int).Rsh(temp, 1)
dMant = dMant.Add(dMant, halfDown)
dMant = dMant.Quo(dMant, temp)
}
if sign == 1 {
dMant = dMant.Neg(dMant)
}
return Decimal{
value: dMant,
exp: exp,
}
}
// Copy returns a copy of decimal with the same value and exponent, but a different pointer to value.
func (d Decimal) Copy() Decimal {
d.ensureInitialized()
return Decimal{
value: &(*d.value),
exp: d.exp,
}
}
// rescale returns a rescaled version of the decimal. Returned
// decimal may be less precise if the given exponent is bigger
// than the initial exponent of the Decimal.
// NOTE: this will truncate, NOT round
//
// Example:
//
// d := New(12345, -4)
// d2 := d.rescale(-1)
// d3 := d2.rescale(-4)
// println(d1)
// println(d2)
// println(d3)
//
// Output:
//
// 1.2345
// 1.2
// 1.2000
//
func (d Decimal) rescale(exp int32) Decimal {
d.ensureInitialized()
if d.exp == exp {
return Decimal{
new(big.Int).Set(d.value),
d.exp,
}
}
// NOTE(vadim): must convert exps to float64 before - to prevent overflow
diff := math.Abs(float64(exp) - float64(d.exp))
value := new(big.Int).Set(d.value)
expScale := new(big.Int).Exp(tenInt, big.NewInt(int64(diff)), nil)
if exp > d.exp {
value = value.Quo(value, expScale)
} else if exp < d.exp {
value = value.Mul(value, expScale)
}
return Decimal{
value: value,
exp: exp,
}
}
// Abs returns the absolute value of the decimal.
func (d Decimal) Abs() Decimal {
if !d.IsNegative() {
return d
}
d.ensureInitialized()
d2Value := new(big.Int).Abs(d.value)
return Decimal{
value: d2Value,
exp: d.exp,
}
}
// Add returns d + d2.
func (d Decimal) Add(d2 Decimal) Decimal {
rd, rd2 := RescalePair(d, d2)
d3Value := new(big.Int).Add(rd.value, rd2.value)
return Decimal{
value: d3Value,
exp: rd.exp,
}
}
// Sub returns d - d2.
func (d Decimal) Sub(d2 Decimal) Decimal {
rd, rd2 := RescalePair(d, d2)
d3Value := new(big.Int).Sub(rd.value, rd2.value)
return Decimal{
value: d3Value,
exp: rd.exp,
}
}
// Neg returns -d.
func (d Decimal) Neg() Decimal {
d.ensureInitialized()
val := new(big.Int).Neg(d.value)
return Decimal{
value: val,
exp: d.exp,
}
}
// Mul returns d * d2.
func (d Decimal) Mul(d2 Decimal) Decimal {
d.ensureInitialized()
d2.ensureInitialized()
expInt64 := int64(d.exp) + int64(d2.exp)
if expInt64 > math.MaxInt32 || expInt64 < math.MinInt32 {
// NOTE(vadim): better to panic than give incorrect results, as
// Decimals are usually used for money
panic(fmt.Sprintf("exponent %v overflows an int32!", expInt64))
}
d3Value := new(big.Int).Mul(d.value, d2.value)
return Decimal{
value: d3Value,
exp: int32(expInt64),
}
}
// Shift shifts the decimal in base 10.
// It shifts left when shift is positive and right if shift is negative.
// In simpler terms, the given value for shift is added to the exponent
// of the decimal.
func (d Decimal) Shift(shift int32) Decimal {
d.ensureInitialized()
return Decimal{
value: new(big.Int).Set(d.value),
exp: d.exp + shift,
}
}
// Div returns d / d2. If it doesn't divide exactly, the result will have
// DivisionPrecision digits after the decimal point.
func (d Decimal) Div(d2 Decimal) Decimal {
return d.DivRound(d2, int32(DivisionPrecision))
}
// QuoRem does divsion with remainder
// d.QuoRem(d2,precision) returns quotient q and remainder r such that
// d = d2 * q + r, q an integer multiple of 10^(-precision)
// 0 <= r < abs(d2) * 10 ^(-precision) if d>=0
// 0 >= r > -abs(d2) * 10 ^(-precision) if d<0
// Note that precision<0 is allowed as input.
func (d Decimal) QuoRem(d2 Decimal, precision int32) (Decimal, Decimal) {
d.ensureInitialized()
d2.ensureInitialized()
if d2.value.Sign() == 0 {
panic("decimal division by 0")
}
scale := -precision
e := int64(d.exp - d2.exp - scale)
if e > math.MaxInt32 || e < math.MinInt32 {
panic("overflow in decimal QuoRem")
}
var aa, bb, expo big.Int
var scalerest int32
// d = a 10^ea
// d2 = b 10^eb
if e < 0 {
aa = *d.value
expo.SetInt64(-e)
bb.Exp(tenInt, &expo, nil)
bb.Mul(d2.value, &bb)
scalerest = d.exp
// now aa = a
// bb = b 10^(scale + eb - ea)
} else {
expo.SetInt64(e)
aa.Exp(tenInt, &expo, nil)
aa.Mul(d.value, &aa)
bb = *d2.value
scalerest = scale + d2.exp
// now aa = a ^ (ea - eb - scale)
// bb = b
}
var q, r big.Int
q.QuoRem(&aa, &bb, &r)
dq := Decimal{value: &q, exp: scale}
dr := Decimal{value: &r, exp: scalerest}
return dq, dr
}
// DivRound divides and rounds to a given precision
// i.e. to an integer multiple of 10^(-precision)
// for a positive quotient digit 5 is rounded up, away from 0
// if the quotient is negative then digit 5 is rounded down, away from 0
// Note that precision<0 is allowed as input.
func (d Decimal) DivRound(d2 Decimal, precision int32) Decimal {
// QuoRem already checks initialization
q, r := d.QuoRem(d2, precision)
// the actual rounding decision is based on comparing r*10^precision and d2/2
// instead compare 2 r 10 ^precision and d2
var rv2 big.Int
rv2.Abs(r.value)
rv2.Lsh(&rv2, 1)
// now rv2 = abs(r.value) * 2
r2 := Decimal{value: &rv2, exp: r.exp + precision}
// r2 is now 2 * r * 10 ^ precision
var c = r2.Cmp(d2.Abs())
if c < 0 {
return q
}
if d.value.Sign()*d2.value.Sign() < 0 {
return q.Sub(New(1, -precision))
}
return q.Add(New(1, -precision))
}
// Mod returns d % d2.
func (d Decimal) Mod(d2 Decimal) Decimal {
quo := d.Div(d2).Truncate(0)
return d.Sub(d2.Mul(quo))
}
// Pow returns d to the power d2
func (d Decimal) Pow(d2 Decimal) Decimal {
var temp Decimal
if d2.IntPart() == 0 {
return NewFromFloat(1)
}
temp = d.Pow(d2.Div(NewFromFloat(2)))
if d2.IntPart()%2 == 0 {
return temp.Mul(temp)
}
if d2.IntPart() > 0 {
return temp.Mul(temp).Mul(d)
}
return temp.Mul(temp).Div(d)
}
// ExpHullAbrham calculates the natural exponent of decimal (e to the power of d) using Hull-Abraham algorithm.
// OverallPrecision argument specifies the overall precision of the result (integer part + decimal part).
//
// ExpHullAbrham is faster than ExpTaylor for small precision values, but it is much slower for large precision values.
//
// Example:
//
// NewFromFloat(26.1).ExpHullAbrham(2).String() // output: "220000000000"
// NewFromFloat(26.1).ExpHullAbrham(20).String() // output: "216314672147.05767284"
//
func (d Decimal) ExpHullAbrham(overallPrecision uint32) (Decimal, error) {
// Algorithm based on Variable precision exponential function.
// ACM Transactions on Mathematical Software by T. E. Hull & A. Abrham.
if d.IsZero() {
return Decimal{oneInt, 0}, nil
}
currentPrecision := overallPrecision
// Algorithm does not work if currentPrecision * 23 < |x|.
// Precision is automatically increased in such cases, so the value can be calculated precisely.
// If newly calculated precision is higher than ExpMaxIterations the currentPrecision will not be changed.
f := d.Abs().InexactFloat64()
if ncp := f / 23; ncp > float64(currentPrecision) && ncp < float64(ExpMaxIterations) {
currentPrecision = uint32(math.Ceil(ncp))
}
// fail if abs(d) beyond an over/underflow threshold
overflowThreshold := New(23*int64(currentPrecision), 0)
if d.Abs().Cmp(overflowThreshold) > 0 {
return Decimal{}, fmt.Errorf("over/underflow threshold, exp(x) cannot be calculated precisely")
}
// Return 1 if abs(d) small enough; this also avoids later over/underflow
overflowThreshold2 := New(9, -int32(currentPrecision)-1)
if d.Abs().Cmp(overflowThreshold2) <= 0 {
return Decimal{oneInt, d.exp}, nil
}
// t is the smallest integer >= 0 such that the corresponding abs(d/k) < 1
t := d.exp + int32(d.NumDigits()) // Add d.NumDigits because the paper assumes that d.value [0.1, 1)
if t < 0 {
t = 0
}
k := New(1, t) // reduction factor
r := Decimal{new(big.Int).Set(d.value), d.exp - t} // reduced argument
p := int32(currentPrecision) + t + 2 // precision for calculating the sum
// Determine n, the number of therms for calculating sum
// use first Newton step (1.435p - 1.182) / log10(p/abs(r))
// for solving appropriate equation, along with directed
// roundings and simple rational bound for log10(p/abs(r))
rf := r.Abs().InexactFloat64()
pf := float64(p)
nf := math.Ceil((1.453*pf - 1.182) / math.Log10(pf/rf))
if nf > float64(ExpMaxIterations) || math.IsNaN(nf) {
return Decimal{}, fmt.Errorf("exact value cannot be calculated in <=ExpMaxIterations iterations")
}
n := int64(nf)
tmp := New(0, 0)
sum := New(1, 0)
one := New(1, 0)
for i := n - 1; i > 0; i-- {
tmp.value.SetInt64(i)
sum = sum.Mul(r.DivRound(tmp, p))
sum = sum.Add(one)
}
ki := k.IntPart()
res := New(1, 0)
for i := ki; i > 0; i-- {
res = res.Mul(sum)
}
resNumDigits := int32(res.NumDigits())
var roundDigits int32
if resNumDigits > abs(res.exp) {
roundDigits = int32(currentPrecision) - resNumDigits - res.exp
} else {
roundDigits = int32(currentPrecision)
}
res = res.Round(roundDigits)
return res, nil
}
// ExpTaylor calculates the natural exponent of decimal (e to the power of d) using Taylor series expansion.
// Precision argument specifies how precise the result must be (number of digits after decimal point).
// Negative precision is allowed.
//
// ExpTaylor is much faster for large precision values than ExpHullAbrham.
//
// Example:
//
// d, err := NewFromFloat(26.1).ExpTaylor(2).String()
// d.String() // output: "216314672147.06"
//
// NewFromFloat(26.1).ExpTaylor(20).String()
// d.String() // output: "216314672147.05767284062928674083"
//
// NewFromFloat(26.1).ExpTaylor(-10).String()
// d.String() // output: "220000000000"
//
func (d Decimal) ExpTaylor(precision int32) (Decimal, error) {
// Note(mwoss): Implementation can be optimized by exclusively using big.Int API only
if d.IsZero() {
return Decimal{oneInt, 0}.Round(precision), nil
}
var epsilon Decimal
var divPrecision int32
if precision < 0 {
epsilon = New(1, -1)
divPrecision = 8
} else {
epsilon = New(1, -precision-1)
divPrecision = precision + 1
}
decAbs := d.Abs()
pow := d.Abs()
factorial := New(1, 0)
result := New(1, 0)
for i := int64(1); ; {
step := pow.DivRound(factorial, divPrecision)
result = result.Add(step)
// Stop Taylor series when current step is smaller than epsilon
if step.Cmp(epsilon) < 0 {
break
}
pow = pow.Mul(decAbs)
i++
// Calculate next factorial number or retrieve cached value
if len(factorials) >= int(i) && !factorials[i-1].IsZero() {
factorial = factorials[i-1]
} else {
// To avoid any race conditions, firstly the zero value is appended to a slice to create
// a spot for newly calculated factorial. After that, the zero value is replaced by calculated
// factorial using the index notation.
factorial = factorials[i-2].Mul(New(i, 0))
factorials = append(factorials, Zero)
factorials[i-1] = factorial
}
}
if d.Sign() < 0 {
result = New(1, 0).DivRound(result, precision+1)
}
result = result.Round(precision)
return result, nil
}
// NumDigits returns the number of digits of the decimal coefficient (d.Value)
// Note: Current implementation is extremely slow for large decimals and/or decimals with large fractional part
func (d Decimal) NumDigits() int {
// Note(mwoss): It can be optimized, unnecessary cast of big.Int to string
if d.IsNegative() {
return len(d.value.String()) - 1
}
return len(d.value.String())
}
// IsInteger returns true when decimal can be represented as an integer value, otherwise, it returns false.
func (d Decimal) IsInteger() bool {
// The most typical case, all decimal with exponent higher or equal 0 can be represented as integer
if d.exp >= 0 {
return true
}
// When the exponent is negative we have to check every number after the decimal place
// If all of them are zeroes, we are sure that given decimal can be represented as an integer
var r big.Int
q := new(big.Int).Set(d.value)
for z := abs(d.exp); z > 0; z-- {
q.QuoRem(q, tenInt, &r)
if r.Cmp(zeroInt) != 0 {
return false
}
}
return true
}
// Abs calculates absolute value of any int32. Used for calculating absolute value of decimal's exponent.
func abs(n int32) int32 {
if n < 0 {
return -n
}
return n
}
// Cmp compares the numbers represented by d and d2 and returns:
//
// -1 if d < d2
// 0 if d == d2
// +1 if d > d2
//
func (d Decimal) Cmp(d2 Decimal) int {
d.ensureInitialized()
d2.ensureInitialized()
if d.exp == d2.exp {
return d.value.Cmp(d2.value)
}
rd, rd2 := RescalePair(d, d2)
return rd.value.Cmp(rd2.value)
}
// Equal returns whether the numbers represented by d and d2 are equal.
func (d Decimal) Equal(d2 Decimal) bool {
return d.Cmp(d2) == 0
}
// Equals is deprecated, please use Equal method instead
func (d Decimal) Equals(d2 Decimal) bool {
return d.Equal(d2)
}
// GreaterThan (GT) returns true when d is greater than d2.
func (d Decimal) GreaterThan(d2 Decimal) bool {
return d.Cmp(d2) == 1
}
// GreaterThanOrEqual (GTE) returns true when d is greater than or equal to d2.
func (d Decimal) GreaterThanOrEqual(d2 Decimal) bool {
cmp := d.Cmp(d2)
return cmp == 1 || cmp == 0
}
// LessThan (LT) returns true when d is less than d2.
func (d Decimal) LessThan(d2 Decimal) bool {
return d.Cmp(d2) == -1
}
// LessThanOrEqual (LTE) returns true when d is less than or equal to d2.
func (d Decimal) LessThanOrEqual(d2 Decimal) bool {
cmp := d.Cmp(d2)
return cmp == -1 || cmp == 0
}
// Sign returns:
//
// -1 if d < 0
// 0 if d == 0
// +1 if d > 0
//
func (d Decimal) Sign() int {
if d.value == nil {
return 0
}
return d.value.Sign()
}
// IsPositive return
//
// true if d > 0
// false if d == 0
// false if d < 0
func (d Decimal) IsPositive() bool {
return d.Sign() == 1
}
// IsNegative return
//
// true if d < 0
// false if d == 0
// false if d > 0
func (d Decimal) IsNegative() bool {
return d.Sign() == -1
}
// IsZero return
//
// true if d == 0
// false if d > 0
// false if d < 0
func (d Decimal) IsZero() bool {
return d.Sign() == 0
}
// Exponent returns the exponent, or scale component of the decimal.
func (d Decimal) Exponent() int32 {
return d.exp
}
// Coefficient returns the coefficient of the decimal. It is scaled by 10^Exponent()
func (d Decimal) Coefficient() *big.Int {
d.ensureInitialized()
// we copy the coefficient so that mutating the result does not mutate the Decimal.
return new(big.Int).Set(d.value)
}
// CoefficientInt64 returns the coefficient of the decimal as int64. It is scaled by 10^Exponent()
// If coefficient cannot be represented in an int64, the result will be undefined.
func (d Decimal) CoefficientInt64() int64 {
d.ensureInitialized()
return d.value.Int64()
}
// IntPart returns the integer component of the decimal.
func (d Decimal) IntPart() int64 {
scaledD := d.rescale(0)
return scaledD.value.Int64()
}
// BigInt returns integer component of the decimal as a BigInt.
func (d Decimal) BigInt() *big.Int {
scaledD := d.rescale(0)
i := &big.Int{}
i.SetString(scaledD.String(), 10)
return i
}
// BigFloat returns decimal as BigFloat.
// Be aware that casting decimal to BigFloat might cause a loss of precision.
func (d Decimal) BigFloat() *big.Float {
f := &big.Float{}
f.SetString(d.String())
return f
}
// Rat returns a rational number representation of the decimal.
func (d Decimal) Rat() *big.Rat {
d.ensureInitialized()
if d.exp <= 0 {
// NOTE(vadim): must negate after casting to prevent int32 overflow
denom := new(big.Int).Exp(tenInt, big.NewInt(-int64(d.exp)), nil)
return new(big.Rat).SetFrac(d.value, denom)
}
mul := new(big.Int).Exp(tenInt, big.NewInt(int64(d.exp)), nil)
num := new(big.Int).Mul(d.value, mul)
return new(big.Rat).SetFrac(num, oneInt)
}
// Float64 returns the nearest float64 value for d and a bool indicating
// whether f represents d exactly.
// For more details, see the documentation for big.Rat.Float64
func (d Decimal) Float64() (f float64, exact bool) {
return d.Rat().Float64()
}
// InexactFloat64 returns the nearest float64 value for d.
// It doesn't indicate if the returned value represents d exactly.
func (d Decimal) InexactFloat64() float64 {
f, _ := d.Float64()
return f
}
// String returns the string representation of the decimal
// with the fixed point.
//
// Example:
//
// d := New(-12345, -3)
// println(d.String())
//
// Output:
//
// -12.345
//
func (d Decimal) String() string {
return d.string(true)
}
// StringFixed returns a rounded fixed-point string with places digits after
// the decimal point.
//
// Example:
//
// NewFromFloat(0).StringFixed(2) // output: "0.00"
// NewFromFloat(0).StringFixed(0) // output: "0"
// NewFromFloat(5.45).StringFixed(0) // output: "5"
// NewFromFloat(5.45).StringFixed(1) // output: "5.5"
// NewFromFloat(5.45).StringFixed(2) // output: "5.45"
// NewFromFloat(5.45).StringFixed(3) // output: "5.450"
// NewFromFloat(545).StringFixed(-1) // output: "550"
//
func (d Decimal) StringFixed(places int32) string {
rounded := d.Round(places)
return rounded.string(false)
}
// StringFixedBank returns a banker rounded fixed-point string with places digits
// after the decimal point.
//
// Example:
//
// NewFromFloat(0).StringFixedBank(2) // output: "0.00"
// NewFromFloat(0).StringFixedBank(0) // output: "0"
// NewFromFloat(5.45).StringFixedBank(0) // output: "5"
// NewFromFloat(5.45).StringFixedBank(1) // output: "5.4"
// NewFromFloat(5.45).StringFixedBank(2) // output: "5.45"
// NewFromFloat(5.45).StringFixedBank(3) // output: "5.450"
// NewFromFloat(545).StringFixedBank(-1) // output: "540"
//
func (d Decimal) StringFixedBank(places int32) string {
rounded := d.RoundBank(places)
return rounded.string(false)
}
// StringFixedCash returns a Swedish/Cash rounded fixed-point string. For
// more details see the documentation at function RoundCash.
func (d Decimal) StringFixedCash(interval uint8) string {
rounded := d.RoundCash(interval)
return rounded.string(false)
}
// Round rounds the decimal to places decimal places.
// If places < 0, it will round the integer part to the nearest 10^(-places).
//
// Example:
//
// NewFromFloat(5.45).Round(1).String() // output: "5.5"
// NewFromFloat(545).Round(-1).String() // output: "550"
//
func (d Decimal) Round(places int32) Decimal {
if d.exp == -places {
return d
}
// truncate to places + 1
ret := d.rescale(-places - 1)
// add sign(d) * 0.5
if ret.value.Sign() < 0 {
ret.value.Sub(ret.value, fiveInt)
} else {
ret.value.Add(ret.value, fiveInt)
}
// floor for positive numbers, ceil for negative numbers
_, m := ret.value.DivMod(ret.value, tenInt, new(big.Int))
ret.exp++
if ret.value.Sign() < 0 && m.Cmp(zeroInt) != 0 {
ret.value.Add(ret.value, oneInt)
}
return ret
}
// RoundCeil rounds the decimal towards +infinity.
//
// Example:
//
// NewFromFloat(545).RoundCeil(-2).String() // output: "600"
// NewFromFloat(500).RoundCeil(-2).String() // output: "500"
// NewFromFloat(1.1001).RoundCeil(2).String() // output: "1.11"
// NewFromFloat(-1.454).RoundCeil(1).String() // output: "-1.5"
//
func (d Decimal) RoundCeil(places int32) Decimal {
if d.exp >= -places {
return d
}
rescaled := d.rescale(-places)
if d.Equal(rescaled) {
return d
}
if d.value.Sign() > 0 {
rescaled.value.Add(rescaled.value, oneInt)
}
return rescaled
}
// RoundFloor rounds the decimal towards -infinity.
//
// Example:
//
// NewFromFloat(545).RoundFloor(-2).String() // output: "500"
// NewFromFloat(-500).RoundFloor(-2).String() // output: "-500"
// NewFromFloat(1.1001).RoundFloor(2).String() // output: "1.1"
// NewFromFloat(-1.454).RoundFloor(1).String() // output: "-1.4"
//
func (d Decimal) RoundFloor(places int32) Decimal {
if d.exp >= -places {
return d
}
rescaled := d.rescale(-places)
if d.Equal(rescaled) {
return d
}
if d.value.Sign() < 0 {
rescaled.value.Sub(rescaled.value, oneInt)
}
return rescaled
}
// RoundUp rounds the decimal away from zero.
//
// Example:
//
// NewFromFloat(545).RoundUp(-2).String() // output: "600"
// NewFromFloat(500).RoundUp(-2).String() // output: "500"
// NewFromFloat(1.1001).RoundUp(2).String() // output: "1.11"
// NewFromFloat(-1.454).RoundUp(1).String() // output: "-1.4"
//
func (d Decimal) RoundUp(places int32) Decimal {
if d.exp >= -places {
return d
}
rescaled := d.rescale(-places)
if d.Equal(rescaled) {
return d
}
if d.value.Sign() > 0 {
rescaled.value.Add(rescaled.value, oneInt)
} else if d.value.Sign() < 0 {
rescaled.value.Sub(rescaled.value, oneInt)
}
return rescaled
}
// RoundDown rounds the decimal towards zero.
//
// Example:
//
// NewFromFloat(545).RoundDown(-2).String() // output: "500"
// NewFromFloat(-500).RoundDown(-2).String() // output: "-500"
// NewFromFloat(1.1001).RoundDown(2).String() // output: "1.1"
// NewFromFloat(-1.454).RoundDown(1).String() // output: "-1.5"
//
func (d Decimal) RoundDown(places int32) Decimal {
if d.exp >= -places {
return d
}
rescaled := d.rescale(-places)
if d.Equal(rescaled) {
return d
}
return rescaled
}
// RoundBank rounds the decimal to places decimal places.
// If the final digit to round is equidistant from the nearest two integers the
// rounded value is taken as the even number
//
// If places < 0, it will round the integer part to the nearest 10^(-places).
//
// Examples:
//
// NewFromFloat(5.45).RoundBank(1).String() // output: "5.4"
// NewFromFloat(545).RoundBank(-1).String() // output: "540"
// NewFromFloat(5.46).RoundBank(1).String() // output: "5.5"
// NewFromFloat(546).RoundBank(-1).String() // output: "550"
// NewFromFloat(5.55).RoundBank(1).String() // output: "5.6"
// NewFromFloat(555).RoundBank(-1).String() // output: "560"
//
func (d Decimal) RoundBank(places int32) Decimal {
round := d.Round(places)
remainder := d.Sub(round).Abs()
half := New(5, -places-1)
if remainder.Cmp(half) == 0 && round.value.Bit(0) != 0 {
if round.value.Sign() < 0 {
round.value.Add(round.value, oneInt)
} else {
round.value.Sub(round.value, oneInt)
}
}
return round
}
// RoundCash aka Cash/Penny/öre rounding rounds decimal to a specific
// interval. The amount payable for a cash transaction is rounded to the nearest
// multiple of the minimum currency unit available. The following intervals are
// available: 5, 10, 25, 50 and 100; any other number throws a panic.
// 5: 5 cent rounding 3.43 => 3.45
// 10: 10 cent rounding 3.45 => 3.50 (5 gets rounded up)
// 25: 25 cent rounding 3.41 => 3.50
// 50: 50 cent rounding 3.75 => 4.00
// 100: 100 cent rounding 3.50 => 4.00
// For more details: https://en.wikipedia.org/wiki/Cash_rounding
func (d Decimal) RoundCash(interval uint8) Decimal {
var iVal *big.Int
switch interval {
case 5:
iVal = twentyInt
case 10:
iVal = tenInt
case 25:
iVal = fourInt
case 50:
iVal = twoInt
case 100:
iVal = oneInt
default:
panic(fmt.Sprintf("Decimal does not support this Cash rounding interval `%d`. Supported: 5, 10, 25, 50, 100", interval))
}
dVal := Decimal{
value: iVal,
}
// TODO: optimize those calculations to reduce the high allocations (~29 allocs).
return d.Mul(dVal).Round(0).Div(dVal).Truncate(2)
}
// Floor returns the nearest integer value less than or equal to d.
func (d Decimal) Floor() Decimal {
d.ensureInitialized()
if d.exp >= 0 {
return d
}
exp := big.NewInt(10)
// NOTE(vadim): must negate after casting to prevent int32 overflow
exp.Exp(exp, big.NewInt(-int64(d.exp)), nil)
z := new(big.Int).Div(d.value, exp)
return Decimal{value: z, exp: 0}
}
// Ceil returns the nearest integer value greater than or equal to d.
func (d Decimal) Ceil() Decimal {
d.ensureInitialized()
if d.exp >= 0 {
return d
}
exp := big.NewInt(10)
// NOTE(vadim): must negate after casting to prevent int32 overflow
exp.Exp(exp, big.NewInt(-int64(d.exp)), nil)
z, m := new(big.Int).DivMod(d.value, exp, new(big.Int))
if m.Cmp(zeroInt) != 0 {
z.Add(z, oneInt)
}
return Decimal{value: z, exp: 0}
}
// Truncate truncates off digits from the number, without rounding.
//
// NOTE: precision is the last digit that will not be truncated (must be >= 0).
//
// Example:
//
// decimal.NewFromString("123.456").Truncate(2).String() // "123.45"
//
func (d Decimal) Truncate(precision int32) Decimal {
d.ensureInitialized()
if precision >= 0 && -precision > d.exp {
return d.rescale(-precision)
}
return d
}
// UnmarshalJSON implements the json.Unmarshaler interface.
func (d *Decimal) UnmarshalJSON(decimalBytes []byte) error {
if string(decimalBytes) == "null" {
return nil
}
str, err := unquoteIfQuoted(decimalBytes)
if err != nil {
return fmt.Errorf("error decoding string '%s': %s", decimalBytes, err)
}
decimal, err := NewFromString(str)
*d = decimal
if err != nil {
return fmt.Errorf("error decoding string '%s': %s", str, err)
}
return nil
}
// MarshalJSON implements the json.Marshaler interface.
func (d Decimal) MarshalJSON() ([]byte, error) {
var str string
if MarshalJSONWithoutQuotes {
str = d.String()
} else {
str = "\"" + d.String() + "\""
}
return []byte(str), nil
}
// UnmarshalBinary implements the encoding.BinaryUnmarshaler interface. As a string representation
// is already used when encoding to text, this method stores that string as []byte
func (d *Decimal) UnmarshalBinary(data []byte) error {
// Verify we have at least 4 bytes for the exponent. The GOB encoded value
// may be empty.
if len(data) < 4 {
return fmt.Errorf("error decoding binary %v: expected at least 4 bytes, got %d", data, len(data))
}
// Extract the exponent
d.exp = int32(binary.BigEndian.Uint32(data[:4]))
// Extract the value
d.value = new(big.Int)
if err := d.value.GobDecode(data[4:]); err != nil {
return fmt.Errorf("error decoding binary %v: %s", data, err)
}
return nil
}
// MarshalBinary implements the encoding.BinaryMarshaler interface.
func (d Decimal) MarshalBinary() (data []byte, err error) {
// Write the exponent first since it's a fixed size
v1 := make([]byte, 4)
binary.BigEndian.PutUint32(v1, uint32(d.exp))
// Add the value
var v2 []byte
if v2, err = d.value.GobEncode(); err != nil {
return
}
// Return the byte array
data = append(v1, v2...)
return
}
// Scan implements the sql.Scanner interface for database deserialization.
func (d *Decimal) Scan(value interface{}) error {
// first try to see if the data is stored in database as a Numeric datatype
switch v := value.(type) {
case float32:
*d = NewFromFloat(float64(v))
return nil
case float64:
// numeric in sqlite3 sends us float64
*d = NewFromFloat(v)
return nil
case int64:
// at least in sqlite3 when the value is 0 in db, the data is sent
// to us as an int64 instead of a float64 ...
*d = New(v, 0)
return nil
default:
// default is trying to interpret value stored as string
str, err := unquoteIfQuoted(v)
if err != nil {
return err
}
*d, err = NewFromString(str)
return err
}
}
// Value implements the driver.Valuer interface for database serialization.
func (d Decimal) Value() (driver.Value, error) {
return d.String(), nil
}
// UnmarshalText implements the encoding.TextUnmarshaler interface for XML
// deserialization.
func (d *Decimal) UnmarshalText(text []byte) error {
str := string(text)
dec, err := NewFromString(str)
*d = dec
if err != nil {
return fmt.Errorf("error decoding string '%s': %s", str, err)
}
return nil
}
// MarshalText implements the encoding.TextMarshaler interface for XML
// serialization.
func (d Decimal) MarshalText() (text []byte, err error) {
return []byte(d.String()), nil
}
// GobEncode implements the gob.GobEncoder interface for gob serialization.
func (d Decimal) GobEncode() ([]byte, error) {
return d.MarshalBinary()
}
// GobDecode implements the gob.GobDecoder interface for gob serialization.
func (d *Decimal) GobDecode(data []byte) error {
return d.UnmarshalBinary(data)
}
// StringScaled first scales the decimal then calls .String() on it.
// NOTE: buggy, unintuitive, and DEPRECATED! Use StringFixed instead.
func (d Decimal) StringScaled(exp int32) string {
return d.rescale(exp).String()
}
func (d Decimal) string(trimTrailingZeros bool) string {
if d.exp >= 0 {
return d.rescale(0).value.String()
}
abs := new(big.Int).Abs(d.value)
str := abs.String()
var intPart, fractionalPart string
// NOTE(vadim): this cast to int will cause bugs if d.exp == INT_MIN
// and you are on a 32-bit machine. Won't fix this super-edge case.
dExpInt := int(d.exp)
if len(str) > -dExpInt {
intPart = str[:len(str)+dExpInt]
fractionalPart = str[len(str)+dExpInt:]
} else {
intPart = "0"
num0s := -dExpInt - len(str)
fractionalPart = strings.Repeat("0", num0s) + str
}
if trimTrailingZeros {
i := len(fractionalPart) - 1
for ; i >= 0; i-- {
if fractionalPart[i] != '0' {
break
}
}
fractionalPart = fractionalPart[:i+1]
}
number := intPart
if len(fractionalPart) > 0 {
number += "." + fractionalPart
}
if d.value.Sign() < 0 {
return "-" + number
}
return number
}
func (d *Decimal) ensureInitialized() {
if d.value == nil {
d.value = new(big.Int)
}
}
// Min returns the smallest Decimal that was passed in the arguments.
//
// To call this function with an array, you must do:
//
// Min(arr[0], arr[1:]...)
//
// This makes it harder to accidentally call Min with 0 arguments.
func Min(first Decimal, rest ...Decimal) Decimal {
ans := first
for _, item := range rest {
if item.Cmp(ans) < 0 {
ans = item
}
}
return ans
}
// Max returns the largest Decimal that was passed in the arguments.
//
// To call this function with an array, you must do:
//
// Max(arr[0], arr[1:]...)
//
// This makes it harder to accidentally call Max with 0 arguments.
func Max(first Decimal, rest ...Decimal) Decimal {
ans := first
for _, item := range rest {
if item.Cmp(ans) > 0 {
ans = item
}
}
return ans
}
// Sum returns the combined total of the provided first and rest Decimals
func Sum(first Decimal, rest ...Decimal) Decimal {
total := first
for _, item := range rest {
total = total.Add(item)
}
return total
}
// Avg returns the average value of the provided first and rest Decimals
func Avg(first Decimal, rest ...Decimal) Decimal {
count := New(int64(len(rest)+1), 0)
sum := Sum(first, rest...)
return sum.Div(count)
}
// RescalePair rescales two decimals to common exponential value (minimal exp of both decimals)
func RescalePair(d1 Decimal, d2 Decimal) (Decimal, Decimal) {
d1.ensureInitialized()
d2.ensureInitialized()
if d1.exp == d2.exp {
return d1, d2
}
baseScale := min(d1.exp, d2.exp)
if baseScale != d1.exp {
return d1.rescale(baseScale), d2
}
return d1, d2.rescale(baseScale)
}
func min(x, y int32) int32 {
if x >= y {
return y
}
return x
}
func unquoteIfQuoted(value interface{}) (string, error) {
var bytes []byte
switch v := value.(type) {
case string:
bytes = []byte(v)
case []byte:
bytes = v
default:
return "", fmt.Errorf("could not convert value '%+v' to byte array of type '%T'",
value, value)
}
// If the amount is quoted, strip the quotes
if len(bytes) > 2 && bytes[0] == '"' && bytes[len(bytes)-1] == '"' {
bytes = bytes[1 : len(bytes)-1]
}
return string(bytes), nil
}
// NullDecimal represents a nullable decimal with compatibility for
// scanning null values from the database.
type NullDecimal struct {
Decimal Decimal
Valid bool
}
func NewNullDecimal(d Decimal) NullDecimal {
return NullDecimal{
Decimal: d,
Valid: true,
}
}
// Scan implements the sql.Scanner interface for database deserialization.
func (d *NullDecimal) Scan(value interface{}) error {
if value == nil {
d.Valid = false
return nil
}
d.Valid = true
return d.Decimal.Scan(value)
}
// Value implements the driver.Valuer interface for database serialization.
func (d NullDecimal) Value() (driver.Value, error) {
if !d.Valid {
return nil, nil
}
return d.Decimal.Value()
}
// UnmarshalJSON implements the json.Unmarshaler interface.
func (d *NullDecimal) UnmarshalJSON(decimalBytes []byte) error {
if string(decimalBytes) == "null" {
d.Valid = false
return nil
}
d.Valid = true
return d.Decimal.UnmarshalJSON(decimalBytes)
}
// MarshalJSON implements the json.Marshaler interface.
func (d NullDecimal) MarshalJSON() ([]byte, error) {
if !d.Valid {
return []byte("null"), nil
}
return d.Decimal.MarshalJSON()
}
// UnmarshalText implements the encoding.TextUnmarshaler interface for XML
// deserialization
func (d *NullDecimal) UnmarshalText(text []byte) error {
str := string(text)
// check for empty XML or XML without body e.g., <tag></tag>
if str == "" {
d.Valid = false
return nil
}
if err := d.Decimal.UnmarshalText(text); err != nil {
d.Valid = false
return err
}
d.Valid = true
return nil
}
// MarshalText implements the encoding.TextMarshaler interface for XML
// serialization.
func (d NullDecimal) MarshalText() (text []byte, err error) {
if !d.Valid {
return []byte{}, nil
}
return d.Decimal.MarshalText()
}
// Trig functions
// Atan returns the arctangent, in radians, of x.
func (d Decimal) Atan() Decimal {
if d.Equal(NewFromFloat(0.0)) {
return d
}
if d.GreaterThan(NewFromFloat(0.0)) {
return d.satan()
}
return d.Neg().satan().Neg()
}
func (d Decimal) xatan() Decimal {
P0 := NewFromFloat(-8.750608600031904122785e-01)
P1 := NewFromFloat(-1.615753718733365076637e+01)
P2 := NewFromFloat(-7.500855792314704667340e+01)
P3 := NewFromFloat(-1.228866684490136173410e+02)
P4 := NewFromFloat(-6.485021904942025371773e+01)
Q0 := NewFromFloat(2.485846490142306297962e+01)
Q1 := NewFromFloat(1.650270098316988542046e+02)
Q2 := NewFromFloat(4.328810604912902668951e+02)
Q3 := NewFromFloat(4.853903996359136964868e+02)
Q4 := NewFromFloat(1.945506571482613964425e+02)
z := d.Mul(d)
b1 := P0.Mul(z).Add(P1).Mul(z).Add(P2).Mul(z).Add(P3).Mul(z).Add(P4).Mul(z)
b2 := z.Add(Q0).Mul(z).Add(Q1).Mul(z).Add(Q2).Mul(z).Add(Q3).Mul(z).Add(Q4)
z = b1.Div(b2)
z = d.Mul(z).Add(d)
return z
}
// satan reduces its argument (known to be positive)
// to the range [0, 0.66] and calls xatan.
func (d Decimal) satan() Decimal {
Morebits := NewFromFloat(6.123233995736765886130e-17) // pi/2 = PIO2 + Morebits
Tan3pio8 := NewFromFloat(2.41421356237309504880) // tan(3*pi/8)
pi := NewFromFloat(3.14159265358979323846264338327950288419716939937510582097494459)
if d.LessThanOrEqual(NewFromFloat(0.66)) {
return d.xatan()
}
if d.GreaterThan(Tan3pio8) {
return pi.Div(NewFromFloat(2.0)).Sub(NewFromFloat(1.0).Div(d).xatan()).Add(Morebits)
}
return pi.Div(NewFromFloat(4.0)).Add((d.Sub(NewFromFloat(1.0)).Div(d.Add(NewFromFloat(1.0)))).xatan()).Add(NewFromFloat(0.5).Mul(Morebits))
}
// sin coefficients
var _sin = [...]Decimal{
NewFromFloat(1.58962301576546568060e-10), // 0x3de5d8fd1fd19ccd
NewFromFloat(-2.50507477628578072866e-8), // 0xbe5ae5e5a9291f5d
NewFromFloat(2.75573136213857245213e-6), // 0x3ec71de3567d48a1
NewFromFloat(-1.98412698295895385996e-4), // 0xbf2a01a019bfdf03
NewFromFloat(8.33333333332211858878e-3), // 0x3f8111111110f7d0
NewFromFloat(-1.66666666666666307295e-1), // 0xbfc5555555555548
}
// Sin returns the sine of the radian argument x.
func (d Decimal) Sin() Decimal {
PI4A := NewFromFloat(7.85398125648498535156e-1) // 0x3fe921fb40000000, Pi/4 split into three parts
PI4B := NewFromFloat(3.77489470793079817668e-8) // 0x3e64442d00000000,
PI4C := NewFromFloat(2.69515142907905952645e-15) // 0x3ce8469898cc5170,
M4PI := NewFromFloat(1.273239544735162542821171882678754627704620361328125) // 4/pi
if d.Equal(NewFromFloat(0.0)) {
return d
}
// make argument positive but save the sign
sign := false
if d.LessThan(NewFromFloat(0.0)) {
d = d.Neg()
sign = true
}
j := d.Mul(M4PI).IntPart() // integer part of x/(Pi/4), as integer for tests on the phase angle
y := NewFromFloat(float64(j)) // integer part of x/(Pi/4), as float
// map zeros to origin
if j&1 == 1 {
j++
y = y.Add(NewFromFloat(1.0))
}
j &= 7 // octant modulo 2Pi radians (360 degrees)
// reflect in x axis
if j > 3 {
sign = !sign
j -= 4
}
z := d.Sub(y.Mul(PI4A)).Sub(y.Mul(PI4B)).Sub(y.Mul(PI4C)) // Extended precision modular arithmetic
zz := z.Mul(z)
if j == 1 || j == 2 {
w := zz.Mul(zz).Mul(_cos[0].Mul(zz).Add(_cos[1]).Mul(zz).Add(_cos[2]).Mul(zz).Add(_cos[3]).Mul(zz).Add(_cos[4]).Mul(zz).Add(_cos[5]))
y = NewFromFloat(1.0).Sub(NewFromFloat(0.5).Mul(zz)).Add(w)
} else {
y = z.Add(z.Mul(zz).Mul(_sin[0].Mul(zz).Add(_sin[1]).Mul(zz).Add(_sin[2]).Mul(zz).Add(_sin[3]).Mul(zz).Add(_sin[4]).Mul(zz).Add(_sin[5])))
}
if sign {
y = y.Neg()
}
return y
}
// cos coefficients
var _cos = [...]Decimal{
NewFromFloat(-1.13585365213876817300e-11), // 0xbda8fa49a0861a9b
NewFromFloat(2.08757008419747316778e-9), // 0x3e21ee9d7b4e3f05
NewFromFloat(-2.75573141792967388112e-7), // 0xbe927e4f7eac4bc6
NewFromFloat(2.48015872888517045348e-5), // 0x3efa01a019c844f5
NewFromFloat(-1.38888888888730564116e-3), // 0xbf56c16c16c14f91
NewFromFloat(4.16666666666665929218e-2), // 0x3fa555555555554b
}
// Cos returns the cosine of the radian argument x.
func (d Decimal) Cos() Decimal {
PI4A := NewFromFloat(7.85398125648498535156e-1) // 0x3fe921fb40000000, Pi/4 split into three parts
PI4B := NewFromFloat(3.77489470793079817668e-8) // 0x3e64442d00000000,
PI4C := NewFromFloat(2.69515142907905952645e-15) // 0x3ce8469898cc5170,
M4PI := NewFromFloat(1.273239544735162542821171882678754627704620361328125) // 4/pi
// make argument positive
sign := false
if d.LessThan(NewFromFloat(0.0)) {
d = d.Neg()
}
j := d.Mul(M4PI).IntPart() // integer part of x/(Pi/4), as integer for tests on the phase angle
y := NewFromFloat(float64(j)) // integer part of x/(Pi/4), as float
// map zeros to origin
if j&1 == 1 {
j++
y = y.Add(NewFromFloat(1.0))
}
j &= 7 // octant modulo 2Pi radians (360 degrees)
// reflect in x axis
if j > 3 {
sign = !sign
j -= 4
}
if j > 1 {
sign = !sign
}
z := d.Sub(y.Mul(PI4A)).Sub(y.Mul(PI4B)).Sub(y.Mul(PI4C)) // Extended precision modular arithmetic
zz := z.Mul(z)
if j == 1 || j == 2 {
y = z.Add(z.Mul(zz).Mul(_sin[0].Mul(zz).Add(_sin[1]).Mul(zz).Add(_sin[2]).Mul(zz).Add(_sin[3]).Mul(zz).Add(_sin[4]).Mul(zz).Add(_sin[5])))
} else {
w := zz.Mul(zz).Mul(_cos[0].Mul(zz).Add(_cos[1]).Mul(zz).Add(_cos[2]).Mul(zz).Add(_cos[3]).Mul(zz).Add(_cos[4]).Mul(zz).Add(_cos[5]))
y = NewFromFloat(1.0).Sub(NewFromFloat(0.5).Mul(zz)).Add(w)
}
if sign {
y = y.Neg()
}
return y
}
var _tanP = [...]Decimal{
NewFromFloat(-1.30936939181383777646e+4), // 0xc0c992d8d24f3f38
NewFromFloat(1.15351664838587416140e+6), // 0x413199eca5fc9ddd
NewFromFloat(-1.79565251976484877988e+7), // 0xc1711fead3299176
}
var _tanQ = [...]Decimal{
NewFromFloat(1.00000000000000000000e+0),
NewFromFloat(1.36812963470692954678e+4), //0x40cab8a5eeb36572
NewFromFloat(-1.32089234440210967447e+6), //0xc13427bc582abc96
NewFromFloat(2.50083801823357915839e+7), //0x4177d98fc2ead8ef
NewFromFloat(-5.38695755929454629881e+7), //0xc189afe03cbe5a31
}
// Tan returns the tangent of the radian argument x.
func (d Decimal) Tan() Decimal {
PI4A := NewFromFloat(7.85398125648498535156e-1) // 0x3fe921fb40000000, Pi/4 split into three parts
PI4B := NewFromFloat(3.77489470793079817668e-8) // 0x3e64442d00000000,
PI4C := NewFromFloat(2.69515142907905952645e-15) // 0x3ce8469898cc5170,
M4PI := NewFromFloat(1.273239544735162542821171882678754627704620361328125) // 4/pi
if d.Equal(NewFromFloat(0.0)) {
return d
}
// make argument positive but save the sign
sign := false
if d.LessThan(NewFromFloat(0.0)) {
d = d.Neg()
sign = true
}
j := d.Mul(M4PI).IntPart() // integer part of x/(Pi/4), as integer for tests on the phase angle
y := NewFromFloat(float64(j)) // integer part of x/(Pi/4), as float
// map zeros to origin
if j&1 == 1 {
j++
y = y.Add(NewFromFloat(1.0))
}
z := d.Sub(y.Mul(PI4A)).Sub(y.Mul(PI4B)).Sub(y.Mul(PI4C)) // Extended precision modular arithmetic
zz := z.Mul(z)
if zz.GreaterThan(NewFromFloat(1e-14)) {
w := zz.Mul(_tanP[0].Mul(zz).Add(_tanP[1]).Mul(zz).Add(_tanP[2]))
x := zz.Add(_tanQ[1]).Mul(zz).Add(_tanQ[2]).Mul(zz).Add(_tanQ[3]).Mul(zz).Add(_tanQ[4])
y = z.Add(z.Mul(w.Div(x)))
} else {
y = z
}
if j&2 == 2 {
y = NewFromFloat(-1.0).Div(y)
}
if sign {
y = y.Neg()
}
return y
}
|