aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/github.com/remyoudompheng/bigfft/fermat.go
blob: 200ee573232e22f8c3ac96899461f9b48422e7a9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
package bigfft

import (
	"math/big"
)

// Arithmetic modulo 2^n+1.

// A fermat of length w+1 represents a number modulo 2^(w*_W) + 1. The last
// word is zero or one. A number has at most two representatives satisfying the
// 0-1 last word constraint.
type fermat nat

func (n fermat) String() string { return nat(n).String() }

func (z fermat) norm() {
	n := len(z) - 1
	c := z[n]
	if c == 0 {
		return
	}
	if z[0] >= c {
		z[n] = 0
		z[0] -= c
		return
	}
	// z[0] < z[n].
	subVW(z, z, c) // Substract c
	if c > 1 {
		z[n] -= c - 1
		c = 1
	}
	// Add back c.
	if z[n] == 1 {
		z[n] = 0
		return
	} else {
		addVW(z, z, 1)
	}
}

// Shift computes (x << k) mod (2^n+1).
func (z fermat) Shift(x fermat, k int) {
	if len(z) != len(x) {
		panic("len(z) != len(x) in Shift")
	}
	n := len(x) - 1
	// Shift by n*_W is taking the opposite.
	k %= 2 * n * _W
	if k < 0 {
		k += 2 * n * _W
	}
	neg := false
	if k >= n*_W {
		k -= n * _W
		neg = true
	}

	kw, kb := k/_W, k%_W

	z[n] = 1 // Add (-1)
	if !neg {
		for i := 0; i < kw; i++ {
			z[i] = 0
		}
		// Shift left by kw words.
		// x = a·2^(n-k) + b
		// x<<k = (b<<k) - a
		copy(z[kw:], x[:n-kw])
		b := subVV(z[:kw+1], z[:kw+1], x[n-kw:])
		if z[kw+1] > 0 {
			z[kw+1] -= b
		} else {
			subVW(z[kw+1:], z[kw+1:], b)
		}
	} else {
		for i := kw + 1; i < n; i++ {
			z[i] = 0
		}
		// Shift left and negate, by kw words.
		copy(z[:kw+1], x[n-kw:n+1])            // z_low = x_high
		b := subVV(z[kw:n], z[kw:n], x[:n-kw]) // z_high -= x_low
		z[n] -= b
	}
	// Add back 1.
	if z[n] > 0 {
		z[n]--
	} else if z[0] < ^big.Word(0) {
		z[0]++
	} else {
		addVW(z, z, 1)
	}
	// Shift left by kb bits
	shlVU(z, z, uint(kb))
	z.norm()
}

// ShiftHalf shifts x by k/2 bits the left. Shifting by 1/2 bit
// is multiplication by sqrt(2) mod 2^n+1 which is 2^(3n/4) - 2^(n/4).
// A temporary buffer must be provided in tmp.
func (z fermat) ShiftHalf(x fermat, k int, tmp fermat) {
	n := len(z) - 1
	if k%2 == 0 {
		z.Shift(x, k/2)
		return
	}
	u := (k - 1) / 2
	a := u + (3*_W/4)*n
	b := u + (_W/4)*n
	z.Shift(x, a)
	tmp.Shift(x, b)
	z.Sub(z, tmp)
}

// Add computes addition mod 2^n+1.
func (z fermat) Add(x, y fermat) fermat {
	if len(z) != len(x) {
		panic("Add: len(z) != len(x)")
	}
	addVV(z, x, y) // there cannot be a carry here.
	z.norm()
	return z
}

// Sub computes substraction mod 2^n+1.
func (z fermat) Sub(x, y fermat) fermat {
	if len(z) != len(x) {
		panic("Add: len(z) != len(x)")
	}
	n := len(y) - 1
	b := subVV(z[:n], x[:n], y[:n])
	b += y[n]
	// If b > 0, we need to subtract b<<n, which is the same as adding b.
	z[n] = x[n]
	if z[0] <= ^big.Word(0)-b {
		z[0] += b
	} else {
		addVW(z, z, b)
	}
	z.norm()
	return z
}

func (z fermat) Mul(x, y fermat) fermat {
	if len(x) != len(y) {
		panic("Mul: len(x) != len(y)")
	}
	n := len(x) - 1
	if n < 30 {
		z = z[:2*n+2]
		basicMul(z, x, y)
		z = z[:2*n+1]
	} else {
		var xi, yi, zi big.Int
		xi.SetBits(x)
		yi.SetBits(y)
		zi.SetBits(z)
		zb := zi.Mul(&xi, &yi).Bits()
		if len(zb) <= n {
			// Short product.
			copy(z, zb)
			for i := len(zb); i < len(z); i++ {
				z[i] = 0
			}
			return z
		}
		z = zb
	}
	// len(z) is at most 2n+1.
	if len(z) > 2*n+1 {
		panic("len(z) > 2n+1")
	}
	// We now have
	// z = z[:n] + 1<<(n*W) * z[n:2n+1]
	// which normalizes to:
	// z = z[:n] - z[n:2n] + z[2n]
	c1 := big.Word(0)
	if len(z) > 2*n {
		c1 = addVW(z[:n], z[:n], z[2*n])
	}
	c2 := big.Word(0)
	if len(z) >= 2*n {
		c2 = subVV(z[:n], z[:n], z[n:2*n])
	} else {
		m := len(z) - n
		c2 = subVV(z[:m], z[:m], z[n:])
		c2 = subVW(z[m:n], z[m:n], c2)
	}
	// Restore carries.
	// Substracting z[n] -= c2 is the same
	// as z[0] += c2
	z = z[:n+1]
	z[n] = c1
	c := addVW(z, z, c2)
	if c != 0 {
		panic("impossible")
	}
	z.norm()
	return z
}

// copied from math/big
//
// basicMul multiplies x and y and leaves the result in z.
// The (non-normalized) result is placed in z[0 : len(x) + len(y)].
func basicMul(z, x, y fermat) {
	// initialize z
	for i := 0; i < len(z); i++ {
		z[i] = 0
	}
	for i, d := range y {
		if d != 0 {
			z[len(x)+i] = addMulVVW(z[i:i+len(x)], x, d)
		}
	}
}