1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
|
package geo
import (
"math"
"github.com/paulmach/orb"
)
// Distance returns the distance between two points on the earth.
func Distance(p1, p2 orb.Point) float64 {
dLat := deg2rad(p1[1] - p2[1])
dLon := deg2rad(p1[0] - p2[0])
dLon = math.Abs(dLon)
if dLon > math.Pi {
dLon = 2*math.Pi - dLon
}
// fast way using pythagorean theorem on an equirectangular projection
x := dLon * math.Cos(deg2rad((p1[1]+p2[1])/2.0))
return math.Sqrt(dLat*dLat+x*x) * orb.EarthRadius
}
// DistanceHaversine computes the distance on the earth using the
// more accurate haversine formula.
func DistanceHaversine(p1, p2 orb.Point) float64 {
dLat := deg2rad(p1[1] - p2[1])
dLon := deg2rad(p1[0] - p2[0])
dLat2Sin := math.Sin(dLat / 2)
dLon2Sin := math.Sin(dLon / 2)
a := dLat2Sin*dLat2Sin + math.Cos(deg2rad(p2[1]))*math.Cos(deg2rad(p1[1]))*dLon2Sin*dLon2Sin
return 2.0 * orb.EarthRadius * math.Atan2(math.Sqrt(a), math.Sqrt(1-a))
}
// Bearing computes the direction one must start traveling on earth
// to be heading from, to the given points.
func Bearing(from, to orb.Point) float64 {
dLon := deg2rad(to[0] - from[0])
fromLatRad := deg2rad(from[1])
toLatRad := deg2rad(to[1])
y := math.Sin(dLon) * math.Cos(toLatRad)
x := math.Cos(fromLatRad)*math.Sin(toLatRad) - math.Sin(fromLatRad)*math.Cos(toLatRad)*math.Cos(dLon)
return rad2deg(math.Atan2(y, x))
}
// Midpoint returns the half-way point along a great circle path between the two points.
func Midpoint(p, p2 orb.Point) orb.Point {
dLon := deg2rad(p2[0] - p[0])
aLatRad := deg2rad(p[1])
bLatRad := deg2rad(p2[1])
x := math.Cos(bLatRad) * math.Cos(dLon)
y := math.Cos(bLatRad) * math.Sin(dLon)
r := orb.Point{
deg2rad(p[0]) + math.Atan2(y, math.Cos(aLatRad)+x),
math.Atan2(math.Sin(aLatRad)+math.Sin(bLatRad), math.Sqrt((math.Cos(aLatRad)+x)*(math.Cos(aLatRad)+x)+y*y)),
}
// convert back to degrees
r[0] = rad2deg(r[0])
r[1] = rad2deg(r[1])
return r
}
// PointAtBearingAndDistance returns the point at the given bearing and distance in meters from the point
func PointAtBearingAndDistance(p orb.Point, bearing, distance float64) orb.Point {
aLat := deg2rad(p[1])
aLon := deg2rad(p[0])
bearingRadians := deg2rad(bearing)
distanceRatio := distance / orb.EarthRadius
bLat := math.Asin(math.Sin(aLat)*math.Cos(distanceRatio) + math.Cos(aLat)*math.Sin(distanceRatio)*math.Cos(bearingRadians))
bLon := aLon +
math.Atan2(
math.Sin(bearingRadians)*math.Sin(distanceRatio)*math.Cos(aLat),
math.Cos(distanceRatio)-math.Sin(aLat)*math.Sin(bLat),
)
return orb.Point{rad2deg(bLon), rad2deg(bLat)}
}
func PointAtDistanceAlongLine(ls orb.LineString, distance float64) (orb.Point, float64) {
if len(ls) == 0 {
panic("empty LineString")
}
if distance < 0 || len(ls) == 1 {
return ls[0], 0.0
}
var (
travelled = 0.0
from, to orb.Point
)
for i := 1; i < len(ls); i++ {
from, to = ls[i-1], ls[i]
actualSegmentDistance := DistanceHaversine(from, to)
expectedSegmentDistance := distance - travelled
if expectedSegmentDistance < actualSegmentDistance {
bearing := Bearing(from, to)
return PointAtBearingAndDistance(from, bearing, expectedSegmentDistance), bearing
}
travelled += actualSegmentDistance
}
return to, Bearing(from, to)
}
|