aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/github.com/google/go-cmp/cmp/compare.go
blob: 0f5b8a48c6b979fe0c2cd9a7eef2774a4d6457c8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package cmp determines equality of values.
//
// This package is intended to be a more powerful and safer alternative to
// [reflect.DeepEqual] for comparing whether two values are semantically equal.
// It is intended to only be used in tests, as performance is not a goal and
// it may panic if it cannot compare the values. Its propensity towards
// panicking means that its unsuitable for production environments where a
// spurious panic may be fatal.
//
// The primary features of cmp are:
//
//   - When the default behavior of equality does not suit the test's needs,
//     custom equality functions can override the equality operation.
//     For example, an equality function may report floats as equal so long as
//     they are within some tolerance of each other.
//
//   - Types with an Equal method (e.g., [time.Time.Equal]) may use that method
//     to determine equality. This allows package authors to determine
//     the equality operation for the types that they define.
//
//   - If no custom equality functions are used and no Equal method is defined,
//     equality is determined by recursively comparing the primitive kinds on
//     both values, much like [reflect.DeepEqual]. Unlike [reflect.DeepEqual],
//     unexported fields are not compared by default; they result in panics
//     unless suppressed by using an [Ignore] option
//     (see [github.com/google/go-cmp/cmp/cmpopts.IgnoreUnexported])
//     or explicitly compared using the [Exporter] option.
package cmp

import (
	"fmt"
	"reflect"
	"strings"

	"github.com/google/go-cmp/cmp/internal/diff"
	"github.com/google/go-cmp/cmp/internal/function"
	"github.com/google/go-cmp/cmp/internal/value"
)

// TODO(≥go1.18): Use any instead of interface{}.

// Equal reports whether x and y are equal by recursively applying the
// following rules in the given order to x and y and all of their sub-values:
//
//   - Let S be the set of all [Ignore], [Transformer], and [Comparer] options that
//     remain after applying all path filters, value filters, and type filters.
//     If at least one [Ignore] exists in S, then the comparison is ignored.
//     If the number of [Transformer] and [Comparer] options in S is non-zero,
//     then Equal panics because it is ambiguous which option to use.
//     If S contains a single [Transformer], then use that to transform
//     the current values and recursively call Equal on the output values.
//     If S contains a single [Comparer], then use that to compare the current values.
//     Otherwise, evaluation proceeds to the next rule.
//
//   - If the values have an Equal method of the form "(T) Equal(T) bool" or
//     "(T) Equal(I) bool" where T is assignable to I, then use the result of
//     x.Equal(y) even if x or y is nil. Otherwise, no such method exists and
//     evaluation proceeds to the next rule.
//
//   - Lastly, try to compare x and y based on their basic kinds.
//     Simple kinds like booleans, integers, floats, complex numbers, strings,
//     and channels are compared using the equivalent of the == operator in Go.
//     Functions are only equal if they are both nil, otherwise they are unequal.
//
// Structs are equal if recursively calling Equal on all fields report equal.
// If a struct contains unexported fields, Equal panics unless an [Ignore] option
// (e.g., [github.com/google/go-cmp/cmp/cmpopts.IgnoreUnexported]) ignores that field
// or the [Exporter] option explicitly permits comparing the unexported field.
//
// Slices are equal if they are both nil or both non-nil, where recursively
// calling Equal on all non-ignored slice or array elements report equal.
// Empty non-nil slices and nil slices are not equal; to equate empty slices,
// consider using [github.com/google/go-cmp/cmp/cmpopts.EquateEmpty].
//
// Maps are equal if they are both nil or both non-nil, where recursively
// calling Equal on all non-ignored map entries report equal.
// Map keys are equal according to the == operator.
// To use custom comparisons for map keys, consider using
// [github.com/google/go-cmp/cmp/cmpopts.SortMaps].
// Empty non-nil maps and nil maps are not equal; to equate empty maps,
// consider using [github.com/google/go-cmp/cmp/cmpopts.EquateEmpty].
//
// Pointers and interfaces are equal if they are both nil or both non-nil,
// where they have the same underlying concrete type and recursively
// calling Equal on the underlying values reports equal.
//
// Before recursing into a pointer, slice element, or map, the current path
// is checked to detect whether the address has already been visited.
// If there is a cycle, then the pointed at values are considered equal
// only if both addresses were previously visited in the same path step.
func Equal(x, y interface{}, opts ...Option) bool {
	s := newState(opts)
	s.compareAny(rootStep(x, y))
	return s.result.Equal()
}

// Diff returns a human-readable report of the differences between two values:
// y - x. It returns an empty string if and only if Equal returns true for the
// same input values and options.
//
// The output is displayed as a literal in pseudo-Go syntax.
// At the start of each line, a "-" prefix indicates an element removed from x,
// a "+" prefix to indicates an element added from y, and the lack of a prefix
// indicates an element common to both x and y. If possible, the output
// uses fmt.Stringer.String or error.Error methods to produce more humanly
// readable outputs. In such cases, the string is prefixed with either an
// 's' or 'e' character, respectively, to indicate that the method was called.
//
// Do not depend on this output being stable. If you need the ability to
// programmatically interpret the difference, consider using a custom Reporter.
func Diff(x, y interface{}, opts ...Option) string {
	s := newState(opts)

	// Optimization: If there are no other reporters, we can optimize for the
	// common case where the result is equal (and thus no reported difference).
	// This avoids the expensive construction of a difference tree.
	if len(s.reporters) == 0 {
		s.compareAny(rootStep(x, y))
		if s.result.Equal() {
			return ""
		}
		s.result = diff.Result{} // Reset results
	}

	r := new(defaultReporter)
	s.reporters = append(s.reporters, reporter{r})
	s.compareAny(rootStep(x, y))
	d := r.String()
	if (d == "") != s.result.Equal() {
		panic("inconsistent difference and equality results")
	}
	return d
}

// rootStep constructs the first path step. If x and y have differing types,
// then they are stored within an empty interface type.
func rootStep(x, y interface{}) PathStep {
	vx := reflect.ValueOf(x)
	vy := reflect.ValueOf(y)

	// If the inputs are different types, auto-wrap them in an empty interface
	// so that they have the same parent type.
	var t reflect.Type
	if !vx.IsValid() || !vy.IsValid() || vx.Type() != vy.Type() {
		t = anyType
		if vx.IsValid() {
			vvx := reflect.New(t).Elem()
			vvx.Set(vx)
			vx = vvx
		}
		if vy.IsValid() {
			vvy := reflect.New(t).Elem()
			vvy.Set(vy)
			vy = vvy
		}
	} else {
		t = vx.Type()
	}

	return &pathStep{t, vx, vy}
}

type state struct {
	// These fields represent the "comparison state".
	// Calling statelessCompare must not result in observable changes to these.
	result    diff.Result // The current result of comparison
	curPath   Path        // The current path in the value tree
	curPtrs   pointerPath // The current set of visited pointers
	reporters []reporter  // Optional reporters

	// recChecker checks for infinite cycles applying the same set of
	// transformers upon the output of itself.
	recChecker recChecker

	// dynChecker triggers pseudo-random checks for option correctness.
	// It is safe for statelessCompare to mutate this value.
	dynChecker dynChecker

	// These fields, once set by processOption, will not change.
	exporters []exporter // List of exporters for structs with unexported fields
	opts      Options    // List of all fundamental and filter options
}

func newState(opts []Option) *state {
	// Always ensure a validator option exists to validate the inputs.
	s := &state{opts: Options{validator{}}}
	s.curPtrs.Init()
	s.processOption(Options(opts))
	return s
}

func (s *state) processOption(opt Option) {
	switch opt := opt.(type) {
	case nil:
	case Options:
		for _, o := range opt {
			s.processOption(o)
		}
	case coreOption:
		type filtered interface {
			isFiltered() bool
		}
		if fopt, ok := opt.(filtered); ok && !fopt.isFiltered() {
			panic(fmt.Sprintf("cannot use an unfiltered option: %v", opt))
		}
		s.opts = append(s.opts, opt)
	case exporter:
		s.exporters = append(s.exporters, opt)
	case reporter:
		s.reporters = append(s.reporters, opt)
	default:
		panic(fmt.Sprintf("unknown option %T", opt))
	}
}

// statelessCompare compares two values and returns the result.
// This function is stateless in that it does not alter the current result,
// or output to any registered reporters.
func (s *state) statelessCompare(step PathStep) diff.Result {
	// We do not save and restore curPath and curPtrs because all of the
	// compareX methods should properly push and pop from them.
	// It is an implementation bug if the contents of the paths differ from
	// when calling this function to when returning from it.

	oldResult, oldReporters := s.result, s.reporters
	s.result = diff.Result{} // Reset result
	s.reporters = nil        // Remove reporters to avoid spurious printouts
	s.compareAny(step)
	res := s.result
	s.result, s.reporters = oldResult, oldReporters
	return res
}

func (s *state) compareAny(step PathStep) {
	// Update the path stack.
	s.curPath.push(step)
	defer s.curPath.pop()
	for _, r := range s.reporters {
		r.PushStep(step)
		defer r.PopStep()
	}
	s.recChecker.Check(s.curPath)

	// Cycle-detection for slice elements (see NOTE in compareSlice).
	t := step.Type()
	vx, vy := step.Values()
	if si, ok := step.(SliceIndex); ok && si.isSlice && vx.IsValid() && vy.IsValid() {
		px, py := vx.Addr(), vy.Addr()
		if eq, visited := s.curPtrs.Push(px, py); visited {
			s.report(eq, reportByCycle)
			return
		}
		defer s.curPtrs.Pop(px, py)
	}

	// Rule 1: Check whether an option applies on this node in the value tree.
	if s.tryOptions(t, vx, vy) {
		return
	}

	// Rule 2: Check whether the type has a valid Equal method.
	if s.tryMethod(t, vx, vy) {
		return
	}

	// Rule 3: Compare based on the underlying kind.
	switch t.Kind() {
	case reflect.Bool:
		s.report(vx.Bool() == vy.Bool(), 0)
	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
		s.report(vx.Int() == vy.Int(), 0)
	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
		s.report(vx.Uint() == vy.Uint(), 0)
	case reflect.Float32, reflect.Float64:
		s.report(vx.Float() == vy.Float(), 0)
	case reflect.Complex64, reflect.Complex128:
		s.report(vx.Complex() == vy.Complex(), 0)
	case reflect.String:
		s.report(vx.String() == vy.String(), 0)
	case reflect.Chan, reflect.UnsafePointer:
		s.report(vx.Pointer() == vy.Pointer(), 0)
	case reflect.Func:
		s.report(vx.IsNil() && vy.IsNil(), 0)
	case reflect.Struct:
		s.compareStruct(t, vx, vy)
	case reflect.Slice, reflect.Array:
		s.compareSlice(t, vx, vy)
	case reflect.Map:
		s.compareMap(t, vx, vy)
	case reflect.Ptr:
		s.comparePtr(t, vx, vy)
	case reflect.Interface:
		s.compareInterface(t, vx, vy)
	default:
		panic(fmt.Sprintf("%v kind not handled", t.Kind()))
	}
}

func (s *state) tryOptions(t reflect.Type, vx, vy reflect.Value) bool {
	// Evaluate all filters and apply the remaining options.
	if opt := s.opts.filter(s, t, vx, vy); opt != nil {
		opt.apply(s, vx, vy)
		return true
	}
	return false
}

func (s *state) tryMethod(t reflect.Type, vx, vy reflect.Value) bool {
	// Check if this type even has an Equal method.
	m, ok := t.MethodByName("Equal")
	if !ok || !function.IsType(m.Type, function.EqualAssignable) {
		return false
	}

	eq := s.callTTBFunc(m.Func, vx, vy)
	s.report(eq, reportByMethod)
	return true
}

func (s *state) callTRFunc(f, v reflect.Value, step Transform) reflect.Value {
	if !s.dynChecker.Next() {
		return f.Call([]reflect.Value{v})[0]
	}

	// Run the function twice and ensure that we get the same results back.
	// We run in goroutines so that the race detector (if enabled) can detect
	// unsafe mutations to the input.
	c := make(chan reflect.Value)
	go detectRaces(c, f, v)
	got := <-c
	want := f.Call([]reflect.Value{v})[0]
	if step.vx, step.vy = got, want; !s.statelessCompare(step).Equal() {
		// To avoid false-positives with non-reflexive equality operations,
		// we sanity check whether a value is equal to itself.
		if step.vx, step.vy = want, want; !s.statelessCompare(step).Equal() {
			return want
		}
		panic(fmt.Sprintf("non-deterministic function detected: %s", function.NameOf(f)))
	}
	return want
}

func (s *state) callTTBFunc(f, x, y reflect.Value) bool {
	if !s.dynChecker.Next() {
		return f.Call([]reflect.Value{x, y})[0].Bool()
	}

	// Swapping the input arguments is sufficient to check that
	// f is symmetric and deterministic.
	// We run in goroutines so that the race detector (if enabled) can detect
	// unsafe mutations to the input.
	c := make(chan reflect.Value)
	go detectRaces(c, f, y, x)
	got := <-c
	want := f.Call([]reflect.Value{x, y})[0].Bool()
	if !got.IsValid() || got.Bool() != want {
		panic(fmt.Sprintf("non-deterministic or non-symmetric function detected: %s", function.NameOf(f)))
	}
	return want
}

func detectRaces(c chan<- reflect.Value, f reflect.Value, vs ...reflect.Value) {
	var ret reflect.Value
	defer func() {
		recover() // Ignore panics, let the other call to f panic instead
		c <- ret
	}()
	ret = f.Call(vs)[0]
}

func (s *state) compareStruct(t reflect.Type, vx, vy reflect.Value) {
	var addr bool
	var vax, vay reflect.Value // Addressable versions of vx and vy

	var mayForce, mayForceInit bool
	step := StructField{&structField{}}
	for i := 0; i < t.NumField(); i++ {
		step.typ = t.Field(i).Type
		step.vx = vx.Field(i)
		step.vy = vy.Field(i)
		step.name = t.Field(i).Name
		step.idx = i
		step.unexported = !isExported(step.name)
		if step.unexported {
			if step.name == "_" {
				continue
			}
			// Defer checking of unexported fields until later to give an
			// Ignore a chance to ignore the field.
			if !vax.IsValid() || !vay.IsValid() {
				// For retrieveUnexportedField to work, the parent struct must
				// be addressable. Create a new copy of the values if
				// necessary to make them addressable.
				addr = vx.CanAddr() || vy.CanAddr()
				vax = makeAddressable(vx)
				vay = makeAddressable(vy)
			}
			if !mayForceInit {
				for _, xf := range s.exporters {
					mayForce = mayForce || xf(t)
				}
				mayForceInit = true
			}
			step.mayForce = mayForce
			step.paddr = addr
			step.pvx = vax
			step.pvy = vay
			step.field = t.Field(i)
		}
		s.compareAny(step)
	}
}

func (s *state) compareSlice(t reflect.Type, vx, vy reflect.Value) {
	isSlice := t.Kind() == reflect.Slice
	if isSlice && (vx.IsNil() || vy.IsNil()) {
		s.report(vx.IsNil() && vy.IsNil(), 0)
		return
	}

	// NOTE: It is incorrect to call curPtrs.Push on the slice header pointer
	// since slices represents a list of pointers, rather than a single pointer.
	// The pointer checking logic must be handled on a per-element basis
	// in compareAny.
	//
	// A slice header (see reflect.SliceHeader) in Go is a tuple of a starting
	// pointer P, a length N, and a capacity C. Supposing each slice element has
	// a memory size of M, then the slice is equivalent to the list of pointers:
	//	[P+i*M for i in range(N)]
	//
	// For example, v[:0] and v[:1] are slices with the same starting pointer,
	// but they are clearly different values. Using the slice pointer alone
	// violates the assumption that equal pointers implies equal values.

	step := SliceIndex{&sliceIndex{pathStep: pathStep{typ: t.Elem()}, isSlice: isSlice}}
	withIndexes := func(ix, iy int) SliceIndex {
		if ix >= 0 {
			step.vx, step.xkey = vx.Index(ix), ix
		} else {
			step.vx, step.xkey = reflect.Value{}, -1
		}
		if iy >= 0 {
			step.vy, step.ykey = vy.Index(iy), iy
		} else {
			step.vy, step.ykey = reflect.Value{}, -1
		}
		return step
	}

	// Ignore options are able to ignore missing elements in a slice.
	// However, detecting these reliably requires an optimal differencing
	// algorithm, for which diff.Difference is not.
	//
	// Instead, we first iterate through both slices to detect which elements
	// would be ignored if standing alone. The index of non-discarded elements
	// are stored in a separate slice, which diffing is then performed on.
	var indexesX, indexesY []int
	var ignoredX, ignoredY []bool
	for ix := 0; ix < vx.Len(); ix++ {
		ignored := s.statelessCompare(withIndexes(ix, -1)).NumDiff == 0
		if !ignored {
			indexesX = append(indexesX, ix)
		}
		ignoredX = append(ignoredX, ignored)
	}
	for iy := 0; iy < vy.Len(); iy++ {
		ignored := s.statelessCompare(withIndexes(-1, iy)).NumDiff == 0
		if !ignored {
			indexesY = append(indexesY, iy)
		}
		ignoredY = append(ignoredY, ignored)
	}

	// Compute an edit-script for slices vx and vy (excluding ignored elements).
	edits := diff.Difference(len(indexesX), len(indexesY), func(ix, iy int) diff.Result {
		return s.statelessCompare(withIndexes(indexesX[ix], indexesY[iy]))
	})

	// Replay the ignore-scripts and the edit-script.
	var ix, iy int
	for ix < vx.Len() || iy < vy.Len() {
		var e diff.EditType
		switch {
		case ix < len(ignoredX) && ignoredX[ix]:
			e = diff.UniqueX
		case iy < len(ignoredY) && ignoredY[iy]:
			e = diff.UniqueY
		default:
			e, edits = edits[0], edits[1:]
		}
		switch e {
		case diff.UniqueX:
			s.compareAny(withIndexes(ix, -1))
			ix++
		case diff.UniqueY:
			s.compareAny(withIndexes(-1, iy))
			iy++
		default:
			s.compareAny(withIndexes(ix, iy))
			ix++
			iy++
		}
	}
}

func (s *state) compareMap(t reflect.Type, vx, vy reflect.Value) {
	if vx.IsNil() || vy.IsNil() {
		s.report(vx.IsNil() && vy.IsNil(), 0)
		return
	}

	// Cycle-detection for maps.
	if eq, visited := s.curPtrs.Push(vx, vy); visited {
		s.report(eq, reportByCycle)
		return
	}
	defer s.curPtrs.Pop(vx, vy)

	// We combine and sort the two map keys so that we can perform the
	// comparisons in a deterministic order.
	step := MapIndex{&mapIndex{pathStep: pathStep{typ: t.Elem()}}}
	for _, k := range value.SortKeys(append(vx.MapKeys(), vy.MapKeys()...)) {
		step.vx = vx.MapIndex(k)
		step.vy = vy.MapIndex(k)
		step.key = k
		if !step.vx.IsValid() && !step.vy.IsValid() {
			// It is possible for both vx and vy to be invalid if the
			// key contained a NaN value in it.
			//
			// Even with the ability to retrieve NaN keys in Go 1.12,
			// there still isn't a sensible way to compare the values since
			// a NaN key may map to multiple unordered values.
			// The most reasonable way to compare NaNs would be to compare the
			// set of values. However, this is impossible to do efficiently
			// since set equality is provably an O(n^2) operation given only
			// an Equal function. If we had a Less function or Hash function,
			// this could be done in O(n*log(n)) or O(n), respectively.
			//
			// Rather than adding complex logic to deal with NaNs, make it
			// the user's responsibility to compare such obscure maps.
			const help = "consider providing a Comparer to compare the map"
			panic(fmt.Sprintf("%#v has map key with NaNs\n%s", s.curPath, help))
		}
		s.compareAny(step)
	}
}

func (s *state) comparePtr(t reflect.Type, vx, vy reflect.Value) {
	if vx.IsNil() || vy.IsNil() {
		s.report(vx.IsNil() && vy.IsNil(), 0)
		return
	}

	// Cycle-detection for pointers.
	if eq, visited := s.curPtrs.Push(vx, vy); visited {
		s.report(eq, reportByCycle)
		return
	}
	defer s.curPtrs.Pop(vx, vy)

	vx, vy = vx.Elem(), vy.Elem()
	s.compareAny(Indirect{&indirect{pathStep{t.Elem(), vx, vy}}})
}

func (s *state) compareInterface(t reflect.Type, vx, vy reflect.Value) {
	if vx.IsNil() || vy.IsNil() {
		s.report(vx.IsNil() && vy.IsNil(), 0)
		return
	}
	vx, vy = vx.Elem(), vy.Elem()
	if vx.Type() != vy.Type() {
		s.report(false, 0)
		return
	}
	s.compareAny(TypeAssertion{&typeAssertion{pathStep{vx.Type(), vx, vy}}})
}

func (s *state) report(eq bool, rf resultFlags) {
	if rf&reportByIgnore == 0 {
		if eq {
			s.result.NumSame++
			rf |= reportEqual
		} else {
			s.result.NumDiff++
			rf |= reportUnequal
		}
	}
	for _, r := range s.reporters {
		r.Report(Result{flags: rf})
	}
}

// recChecker tracks the state needed to periodically perform checks that
// user provided transformers are not stuck in an infinitely recursive cycle.
type recChecker struct{ next int }

// Check scans the Path for any recursive transformers and panics when any
// recursive transformers are detected. Note that the presence of a
// recursive Transformer does not necessarily imply an infinite cycle.
// As such, this check only activates after some minimal number of path steps.
func (rc *recChecker) Check(p Path) {
	const minLen = 1 << 16
	if rc.next == 0 {
		rc.next = minLen
	}
	if len(p) < rc.next {
		return
	}
	rc.next <<= 1

	// Check whether the same transformer has appeared at least twice.
	var ss []string
	m := map[Option]int{}
	for _, ps := range p {
		if t, ok := ps.(Transform); ok {
			t := t.Option()
			if m[t] == 1 { // Transformer was used exactly once before
				tf := t.(*transformer).fnc.Type()
				ss = append(ss, fmt.Sprintf("%v: %v => %v", t, tf.In(0), tf.Out(0)))
			}
			m[t]++
		}
	}
	if len(ss) > 0 {
		const warning = "recursive set of Transformers detected"
		const help = "consider using cmpopts.AcyclicTransformer"
		set := strings.Join(ss, "\n\t")
		panic(fmt.Sprintf("%s:\n\t%s\n%s", warning, set, help))
	}
}

// dynChecker tracks the state needed to periodically perform checks that
// user provided functions are symmetric and deterministic.
// The zero value is safe for immediate use.
type dynChecker struct{ curr, next int }

// Next increments the state and reports whether a check should be performed.
//
// Checks occur every Nth function call, where N is a triangular number:
//
//	0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 ...
//
// See https://en.wikipedia.org/wiki/Triangular_number
//
// This sequence ensures that the cost of checks drops significantly as
// the number of functions calls grows larger.
func (dc *dynChecker) Next() bool {
	ok := dc.curr == dc.next
	if ok {
		dc.curr = 0
		dc.next++
	}
	dc.curr++
	return ok
}

// makeAddressable returns a value that is always addressable.
// It returns the input verbatim if it is already addressable,
// otherwise it creates a new value and returns an addressable copy.
func makeAddressable(v reflect.Value) reflect.Value {
	if v.CanAddr() {
		return v
	}
	vc := reflect.New(v.Type()).Elem()
	vc.Set(v)
	return vc
}