aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/github.com/andybalholm/brotli/h6.go
blob: 80bb224aa87590a3ec1387cbbfd34e65e16c03dd (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
package brotli

import "encoding/binary"

/* Copyright 2010 Google Inc. All Rights Reserved.

   Distributed under MIT license.
   See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/

/* A (forgetful) hash table to the data seen by the compressor, to
   help create backward references to previous data.

   This is a hash map of fixed size (bucket_size_) to a ring buffer of
   fixed size (block_size_). The ring buffer contains the last block_size_
   index positions of the given hash key in the compressed data. */
func (*h6) HashTypeLength() uint {
	return 8
}

func (*h6) StoreLookahead() uint {
	return 8
}

/* HashBytes is the function that chooses the bucket to place the address in. */
func hashBytesH6(data []byte, mask uint64, shift int) uint32 {
	var h uint64 = (binary.LittleEndian.Uint64(data) & mask) * kHashMul64Long

	/* The higher bits contain more mixture from the multiplication,
	   so we take our results from there. */
	return uint32(h >> uint(shift))
}

type h6 struct {
	hasherCommon
	bucket_size_ uint
	block_size_  uint
	hash_shift_  int
	hash_mask_   uint64
	block_mask_  uint32
	num          []uint16
	buckets      []uint32
}

func (h *h6) Initialize(params *encoderParams) {
	h.hash_shift_ = 64 - h.params.bucket_bits
	h.hash_mask_ = (^(uint64(0))) >> uint(64-8*h.params.hash_len)
	h.bucket_size_ = uint(1) << uint(h.params.bucket_bits)
	h.block_size_ = uint(1) << uint(h.params.block_bits)
	h.block_mask_ = uint32(h.block_size_ - 1)
	h.num = make([]uint16, h.bucket_size_)
	h.buckets = make([]uint32, h.block_size_*h.bucket_size_)
}

func (h *h6) Prepare(one_shot bool, input_size uint, data []byte) {
	var num []uint16 = h.num
	var partial_prepare_threshold uint = h.bucket_size_ >> 6
	/* Partial preparation is 100 times slower (per socket). */
	if one_shot && input_size <= partial_prepare_threshold {
		var i uint
		for i = 0; i < input_size; i++ {
			var key uint32 = hashBytesH6(data[i:], h.hash_mask_, h.hash_shift_)
			num[key] = 0
		}
	} else {
		for i := 0; i < int(h.bucket_size_); i++ {
			num[i] = 0
		}
	}
}

/* Look at 4 bytes at &data[ix & mask].
   Compute a hash from these, and store the value of ix at that position. */
func (h *h6) Store(data []byte, mask uint, ix uint) {
	var num []uint16 = h.num
	var key uint32 = hashBytesH6(data[ix&mask:], h.hash_mask_, h.hash_shift_)
	var minor_ix uint = uint(num[key]) & uint(h.block_mask_)
	var offset uint = minor_ix + uint(key<<uint(h.params.block_bits))
	h.buckets[offset] = uint32(ix)
	num[key]++
}

func (h *h6) StoreRange(data []byte, mask uint, ix_start uint, ix_end uint) {
	var i uint
	for i = ix_start; i < ix_end; i++ {
		h.Store(data, mask, i)
	}
}

func (h *h6) StitchToPreviousBlock(num_bytes uint, position uint, ringbuffer []byte, ringbuffer_mask uint) {
	if num_bytes >= h.HashTypeLength()-1 && position >= 3 {
		/* Prepare the hashes for three last bytes of the last write.
		   These could not be calculated before, since they require knowledge
		   of both the previous and the current block. */
		h.Store(ringbuffer, ringbuffer_mask, position-3)
		h.Store(ringbuffer, ringbuffer_mask, position-2)
		h.Store(ringbuffer, ringbuffer_mask, position-1)
	}
}

func (h *h6) PrepareDistanceCache(distance_cache []int) {
	prepareDistanceCache(distance_cache, h.params.num_last_distances_to_check)
}

/* Find a longest backward match of &data[cur_ix] up to the length of
   max_length and stores the position cur_ix in the hash table.

   REQUIRES: PrepareDistanceCacheH6 must be invoked for current distance cache
             values; if this method is invoked repeatedly with the same distance
             cache values, it is enough to invoke PrepareDistanceCacheH6 once.

   Does not look for matches longer than max_length.
   Does not look for matches further away than max_backward.
   Writes the best match into |out|.
   |out|->score is updated only if a better match is found. */
func (h *h6) FindLongestMatch(dictionary *encoderDictionary, data []byte, ring_buffer_mask uint, distance_cache []int, cur_ix uint, max_length uint, max_backward uint, gap uint, max_distance uint, out *hasherSearchResult) {
	var num []uint16 = h.num
	var buckets []uint32 = h.buckets
	var cur_ix_masked uint = cur_ix & ring_buffer_mask
	var min_score uint = out.score
	var best_score uint = out.score
	var best_len uint = out.len
	var i uint
	var bucket []uint32
	/* Don't accept a short copy from far away. */
	out.len = 0

	out.len_code_delta = 0

	/* Try last distance first. */
	for i = 0; i < uint(h.params.num_last_distances_to_check); i++ {
		var backward uint = uint(distance_cache[i])
		var prev_ix uint = uint(cur_ix - backward)
		if prev_ix >= cur_ix {
			continue
		}

		if backward > max_backward {
			continue
		}

		prev_ix &= ring_buffer_mask

		if cur_ix_masked+best_len > ring_buffer_mask || prev_ix+best_len > ring_buffer_mask || data[cur_ix_masked+best_len] != data[prev_ix+best_len] {
			continue
		}
		{
			var len uint = findMatchLengthWithLimit(data[prev_ix:], data[cur_ix_masked:], max_length)
			if len >= 3 || (len == 2 && i < 2) {
				/* Comparing for >= 2 does not change the semantics, but just saves for
				   a few unnecessary binary logarithms in backward reference score,
				   since we are not interested in such short matches. */
				var score uint = backwardReferenceScoreUsingLastDistance(uint(len))
				if best_score < score {
					if i != 0 {
						score -= backwardReferencePenaltyUsingLastDistance(i)
					}
					if best_score < score {
						best_score = score
						best_len = uint(len)
						out.len = best_len
						out.distance = backward
						out.score = best_score
					}
				}
			}
		}
	}
	{
		var key uint32 = hashBytesH6(data[cur_ix_masked:], h.hash_mask_, h.hash_shift_)
		bucket = buckets[key<<uint(h.params.block_bits):]
		var down uint
		if uint(num[key]) > h.block_size_ {
			down = uint(num[key]) - h.block_size_
		} else {
			down = 0
		}
		for i = uint(num[key]); i > down; {
			var prev_ix uint
			i--
			prev_ix = uint(bucket[uint32(i)&h.block_mask_])
			var backward uint = cur_ix - prev_ix
			if backward > max_backward {
				break
			}

			prev_ix &= ring_buffer_mask
			if cur_ix_masked+best_len > ring_buffer_mask || prev_ix+best_len > ring_buffer_mask || data[cur_ix_masked+best_len] != data[prev_ix+best_len] {
				continue
			}
			{
				var len uint = findMatchLengthWithLimit(data[prev_ix:], data[cur_ix_masked:], max_length)
				if len >= 4 {
					/* Comparing for >= 3 does not change the semantics, but just saves
					   for a few unnecessary binary logarithms in backward reference
					   score, since we are not interested in such short matches. */
					var score uint = backwardReferenceScore(uint(len), backward)
					if best_score < score {
						best_score = score
						best_len = uint(len)
						out.len = best_len
						out.distance = backward
						out.score = best_score
					}
				}
			}
		}

		bucket[uint32(num[key])&h.block_mask_] = uint32(cur_ix)
		num[key]++
	}

	if min_score == out.score {
		searchInStaticDictionary(dictionary, h, data[cur_ix_masked:], max_length, max_backward+gap, max_distance, out, false)
	}
}