aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/github.com/andybalholm/brotli/encode.go
blob: 8e25a4ec78ab1ee96f51797db223a0f39788c7d8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
package brotli

import (
	"io"
	"math"
)

/* Copyright 2016 Google Inc. All Rights Reserved.

   Distributed under MIT license.
   See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/

/** Minimal value for ::BROTLI_PARAM_LGWIN parameter. */
const minWindowBits = 10

/**
 * Maximal value for ::BROTLI_PARAM_LGWIN parameter.
 *
 * @note equal to @c BROTLI_MAX_DISTANCE_BITS constant.
 */
const maxWindowBits = 24

/**
 * Maximal value for ::BROTLI_PARAM_LGWIN parameter
 * in "Large Window Brotli" (32-bit).
 */
const largeMaxWindowBits = 30

/** Minimal value for ::BROTLI_PARAM_LGBLOCK parameter. */
const minInputBlockBits = 16

/** Maximal value for ::BROTLI_PARAM_LGBLOCK parameter. */
const maxInputBlockBits = 24

/** Minimal value for ::BROTLI_PARAM_QUALITY parameter. */
const minQuality = 0

/** Maximal value for ::BROTLI_PARAM_QUALITY parameter. */
const maxQuality = 11

/** Options for ::BROTLI_PARAM_MODE parameter. */
const (
	modeGeneric = 0
	modeText    = 1
	modeFont    = 2
)

/** Default value for ::BROTLI_PARAM_QUALITY parameter. */
const defaultQuality = 11

/** Default value for ::BROTLI_PARAM_LGWIN parameter. */
const defaultWindow = 22

/** Default value for ::BROTLI_PARAM_MODE parameter. */
const defaultMode = modeGeneric

/** Operations that can be performed by streaming encoder. */
const (
	operationProcess      = 0
	operationFlush        = 1
	operationFinish       = 2
	operationEmitMetadata = 3
)

const (
	streamProcessing     = 0
	streamFlushRequested = 1
	streamFinished       = 2
	streamMetadataHead   = 3
	streamMetadataBody   = 4
)

type Writer struct {
	dst     io.Writer
	options WriterOptions
	err     error

	params              encoderParams
	hasher_             hasherHandle
	input_pos_          uint64
	ringbuffer_         ringBuffer
	commands            []command
	num_literals_       uint
	last_insert_len_    uint
	last_flush_pos_     uint64
	last_processed_pos_ uint64
	dist_cache_         [numDistanceShortCodes]int
	saved_dist_cache_   [4]int
	last_bytes_         uint16
	last_bytes_bits_    byte
	prev_byte_          byte
	prev_byte2_         byte
	storage             []byte
	small_table_        [1 << 10]int
	large_table_        []int
	large_table_size_   uint
	cmd_depths_         [128]byte
	cmd_bits_           [128]uint16
	cmd_code_           [512]byte
	cmd_code_numbits_   uint
	command_buf_        []uint32
	literal_buf_        []byte
	tiny_buf_           struct {
		u64 [2]uint64
		u8  [16]byte
	}
	remaining_metadata_bytes_ uint32
	stream_state_             int
	is_last_block_emitted_    bool
	is_initialized_           bool
}

func inputBlockSize(s *Writer) uint {
	return uint(1) << uint(s.params.lgblock)
}

func unprocessedInputSize(s *Writer) uint64 {
	return s.input_pos_ - s.last_processed_pos_
}

func remainingInputBlockSize(s *Writer) uint {
	var delta uint64 = unprocessedInputSize(s)
	var block_size uint = inputBlockSize(s)
	if delta >= uint64(block_size) {
		return 0
	}
	return block_size - uint(delta)
}

/* Wraps 64-bit input position to 32-bit ring-buffer position preserving
   "not-a-first-lap" feature. */
func wrapPosition(position uint64) uint32 {
	var result uint32 = uint32(position)
	var gb uint64 = position >> 30
	if gb > 2 {
		/* Wrap every 2GiB; The first 3GB are continuous. */
		result = result&((1<<30)-1) | (uint32((gb-1)&1)+1)<<30
	}

	return result
}

func (s *Writer) getStorage(size int) []byte {
	if len(s.storage) < size {
		s.storage = make([]byte, size)
	}

	return s.storage
}

func hashTableSize(max_table_size uint, input_size uint) uint {
	var htsize uint = 256
	for htsize < max_table_size && htsize < input_size {
		htsize <<= 1
	}

	return htsize
}

func getHashTable(s *Writer, quality int, input_size uint, table_size *uint) []int {
	var max_table_size uint = maxHashTableSize(quality)
	var htsize uint = hashTableSize(max_table_size, input_size)
	/* Use smaller hash table when input.size() is smaller, since we
	   fill the table, incurring O(hash table size) overhead for
	   compression, and if the input is short, we won't need that
	   many hash table entries anyway. */

	var table []int
	assert(max_table_size >= 256)
	if quality == fastOnePassCompressionQuality {
		/* Only odd shifts are supported by fast-one-pass. */
		if htsize&0xAAAAA == 0 {
			htsize <<= 1
		}
	}

	if htsize <= uint(len(s.small_table_)) {
		table = s.small_table_[:]
	} else {
		if htsize > s.large_table_size_ {
			s.large_table_size_ = htsize
			s.large_table_ = nil
			s.large_table_ = make([]int, htsize)
		}

		table = s.large_table_
	}

	*table_size = htsize
	for i := 0; i < int(htsize); i++ {
		table[i] = 0
	}
	return table
}

func encodeWindowBits(lgwin int, large_window bool, last_bytes *uint16, last_bytes_bits *byte) {
	if large_window {
		*last_bytes = uint16((lgwin&0x3F)<<8 | 0x11)
		*last_bytes_bits = 14
	} else {
		if lgwin == 16 {
			*last_bytes = 0
			*last_bytes_bits = 1
		} else if lgwin == 17 {
			*last_bytes = 1
			*last_bytes_bits = 7
		} else if lgwin > 17 {
			*last_bytes = uint16((lgwin-17)<<1 | 0x01)
			*last_bytes_bits = 4
		} else {
			*last_bytes = uint16((lgwin-8)<<4 | 0x01)
			*last_bytes_bits = 7
		}
	}
}

/* Decide about the context map based on the ability of the prediction
   ability of the previous byte UTF8-prefix on the next byte. The
   prediction ability is calculated as Shannon entropy. Here we need
   Shannon entropy instead of 'BitsEntropy' since the prefix will be
   encoded with the remaining 6 bits of the following byte, and
   BitsEntropy will assume that symbol to be stored alone using Huffman
   coding. */

var kStaticContextMapContinuation = [64]uint32{
	1, 1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
}
var kStaticContextMapSimpleUTF8 = [64]uint32{
	0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
}

func chooseContextMap(quality int, bigram_histo []uint32, num_literal_contexts *uint, literal_context_map *[]uint32) {
	var monogram_histo = [3]uint32{0}
	var two_prefix_histo = [6]uint32{0}
	var total uint
	var i uint
	var dummy uint
	var entropy [4]float64
	for i = 0; i < 9; i++ {
		monogram_histo[i%3] += bigram_histo[i]
		two_prefix_histo[i%6] += bigram_histo[i]
	}

	entropy[1] = shannonEntropy(monogram_histo[:], 3, &dummy)
	entropy[2] = (shannonEntropy(two_prefix_histo[:], 3, &dummy) + shannonEntropy(two_prefix_histo[3:], 3, &dummy))
	entropy[3] = 0
	for i = 0; i < 3; i++ {
		entropy[3] += shannonEntropy(bigram_histo[3*i:], 3, &dummy)
	}

	total = uint(monogram_histo[0] + monogram_histo[1] + monogram_histo[2])
	assert(total != 0)
	entropy[0] = 1.0 / float64(total)
	entropy[1] *= entropy[0]
	entropy[2] *= entropy[0]
	entropy[3] *= entropy[0]

	if quality < minQualityForHqContextModeling {
		/* 3 context models is a bit slower, don't use it at lower qualities. */
		entropy[3] = entropy[1] * 10
	}

	/* If expected savings by symbol are less than 0.2 bits, skip the
	   context modeling -- in exchange for faster decoding speed. */
	if entropy[1]-entropy[2] < 0.2 && entropy[1]-entropy[3] < 0.2 {
		*num_literal_contexts = 1
	} else if entropy[2]-entropy[3] < 0.02 {
		*num_literal_contexts = 2
		*literal_context_map = kStaticContextMapSimpleUTF8[:]
	} else {
		*num_literal_contexts = 3
		*literal_context_map = kStaticContextMapContinuation[:]
	}
}

/* Decide if we want to use a more complex static context map containing 13
   context values, based on the entropy reduction of histograms over the
   first 5 bits of literals. */

var kStaticContextMapComplexUTF8 = [64]uint32{
	11, 11, 12, 12, /* 0 special */
	0, 0, 0, 0, /* 4 lf */
	1, 1, 9, 9, /* 8 space */
	2, 2, 2, 2, /* !, first after space/lf and after something else. */
	1, 1, 1, 1, /* " */
	8, 3, 3, 3, /* % */
	1, 1, 1, 1, /* ({[ */
	2, 2, 2, 2, /* }]) */
	8, 4, 4, 4, /* :; */
	8, 7, 4, 4, /* . */
	8, 0, 0, 0, /* > */
	3, 3, 3, 3, /* [0..9] */
	5, 5, 10, 5, /* [A-Z] */
	5, 5, 10, 5,
	6, 6, 6, 6, /* [a-z] */
	6, 6, 6, 6,
}

func shouldUseComplexStaticContextMap(input []byte, start_pos uint, length uint, mask uint, quality int, size_hint uint, num_literal_contexts *uint, literal_context_map *[]uint32) bool {
	/* Try the more complex static context map only for long data. */
	if size_hint < 1<<20 {
		return false
	} else {
		var end_pos uint = start_pos + length
		var combined_histo = [32]uint32{0}
		var context_histo = [13][32]uint32{[32]uint32{0}}
		var total uint32 = 0
		var entropy [3]float64
		var dummy uint
		var i uint
		var utf8_lut contextLUT = getContextLUT(contextUTF8)
		/* To make entropy calculations faster and to fit on the stack, we collect
		   histograms over the 5 most significant bits of literals. One histogram
		   without context and 13 additional histograms for each context value. */
		for ; start_pos+64 <= end_pos; start_pos += 4096 {
			var stride_end_pos uint = start_pos + 64
			var prev2 byte = input[start_pos&mask]
			var prev1 byte = input[(start_pos+1)&mask]
			var pos uint

			/* To make the analysis of the data faster we only examine 64 byte long
			   strides at every 4kB intervals. */
			for pos = start_pos + 2; pos < stride_end_pos; pos++ {
				var literal byte = input[pos&mask]
				var context byte = byte(kStaticContextMapComplexUTF8[getContext(prev1, prev2, utf8_lut)])
				total++
				combined_histo[literal>>3]++
				context_histo[context][literal>>3]++
				prev2 = prev1
				prev1 = literal
			}
		}

		entropy[1] = shannonEntropy(combined_histo[:], 32, &dummy)
		entropy[2] = 0
		for i = 0; i < 13; i++ {
			entropy[2] += shannonEntropy(context_histo[i][0:], 32, &dummy)
		}

		entropy[0] = 1.0 / float64(total)
		entropy[1] *= entropy[0]
		entropy[2] *= entropy[0]

		/* The triggering heuristics below were tuned by compressing the individual
		   files of the silesia corpus. If we skip this kind of context modeling
		   for not very well compressible input (i.e. entropy using context modeling
		   is 60% of maximal entropy) or if expected savings by symbol are less
		   than 0.2 bits, then in every case when it triggers, the final compression
		   ratio is improved. Note however that this heuristics might be too strict
		   for some cases and could be tuned further. */
		if entropy[2] > 3.0 || entropy[1]-entropy[2] < 0.2 {
			return false
		} else {
			*num_literal_contexts = 13
			*literal_context_map = kStaticContextMapComplexUTF8[:]
			return true
		}
	}
}

func decideOverLiteralContextModeling(input []byte, start_pos uint, length uint, mask uint, quality int, size_hint uint, num_literal_contexts *uint, literal_context_map *[]uint32) {
	if quality < minQualityForContextModeling || length < 64 {
		return
	} else if shouldUseComplexStaticContextMap(input, start_pos, length, mask, quality, size_hint, num_literal_contexts, literal_context_map) {
	} else /* Context map was already set, nothing else to do. */
	{
		var end_pos uint = start_pos + length
		/* Gather bi-gram data of the UTF8 byte prefixes. To make the analysis of
		   UTF8 data faster we only examine 64 byte long strides at every 4kB
		   intervals. */

		var bigram_prefix_histo = [9]uint32{0}
		for ; start_pos+64 <= end_pos; start_pos += 4096 {
			var lut = [4]int{0, 0, 1, 2}
			var stride_end_pos uint = start_pos + 64
			var prev int = lut[input[start_pos&mask]>>6] * 3
			var pos uint
			for pos = start_pos + 1; pos < stride_end_pos; pos++ {
				var literal byte = input[pos&mask]
				bigram_prefix_histo[prev+lut[literal>>6]]++
				prev = lut[literal>>6] * 3
			}
		}

		chooseContextMap(quality, bigram_prefix_histo[0:], num_literal_contexts, literal_context_map)
	}
}

func shouldCompress_encode(data []byte, mask uint, last_flush_pos uint64, bytes uint, num_literals uint, num_commands uint) bool {
	/* TODO: find more precise minimal block overhead. */
	if bytes <= 2 {
		return false
	}
	if num_commands < (bytes>>8)+2 {
		if float64(num_literals) > 0.99*float64(bytes) {
			var literal_histo = [256]uint32{0}
			const kSampleRate uint32 = 13
			const kMinEntropy float64 = 7.92
			var bit_cost_threshold float64 = float64(bytes) * kMinEntropy / float64(kSampleRate)
			var t uint = uint((uint32(bytes) + kSampleRate - 1) / kSampleRate)
			var pos uint32 = uint32(last_flush_pos)
			var i uint
			for i = 0; i < t; i++ {
				literal_histo[data[pos&uint32(mask)]]++
				pos += kSampleRate
			}

			if bitsEntropy(literal_histo[:], 256) > bit_cost_threshold {
				return false
			}
		}
	}

	return true
}

/* Chooses the literal context mode for a metablock */
func chooseContextMode(params *encoderParams, data []byte, pos uint, mask uint, length uint) int {
	/* We only do the computation for the option of something else than
	   CONTEXT_UTF8 for the highest qualities */
	if params.quality >= minQualityForHqBlockSplitting && !isMostlyUTF8(data, pos, mask, length, kMinUTF8Ratio) {
		return contextSigned
	}

	return contextUTF8
}

func writeMetaBlockInternal(data []byte, mask uint, last_flush_pos uint64, bytes uint, is_last bool, literal_context_mode int, params *encoderParams, prev_byte byte, prev_byte2 byte, num_literals uint, commands []command, saved_dist_cache []int, dist_cache []int, storage_ix *uint, storage []byte) {
	var wrapped_last_flush_pos uint32 = wrapPosition(last_flush_pos)
	var last_bytes uint16
	var last_bytes_bits byte
	var literal_context_lut contextLUT = getContextLUT(literal_context_mode)
	var block_params encoderParams = *params

	if bytes == 0 {
		/* Write the ISLAST and ISEMPTY bits. */
		writeBits(2, 3, storage_ix, storage)

		*storage_ix = (*storage_ix + 7) &^ 7
		return
	}

	if !shouldCompress_encode(data, mask, last_flush_pos, bytes, num_literals, uint(len(commands))) {
		/* Restore the distance cache, as its last update by
		   CreateBackwardReferences is now unused. */
		copy(dist_cache, saved_dist_cache[:4])

		storeUncompressedMetaBlock(is_last, data, uint(wrapped_last_flush_pos), mask, bytes, storage_ix, storage)
		return
	}

	assert(*storage_ix <= 14)
	last_bytes = uint16(storage[1])<<8 | uint16(storage[0])
	last_bytes_bits = byte(*storage_ix)
	if params.quality <= maxQualityForStaticEntropyCodes {
		storeMetaBlockFast(data, uint(wrapped_last_flush_pos), bytes, mask, is_last, params, commands, storage_ix, storage)
	} else if params.quality < minQualityForBlockSplit {
		storeMetaBlockTrivial(data, uint(wrapped_last_flush_pos), bytes, mask, is_last, params, commands, storage_ix, storage)
	} else {
		mb := getMetaBlockSplit()
		if params.quality < minQualityForHqBlockSplitting {
			var num_literal_contexts uint = 1
			var literal_context_map []uint32 = nil
			if !params.disable_literal_context_modeling {
				decideOverLiteralContextModeling(data, uint(wrapped_last_flush_pos), bytes, mask, params.quality, params.size_hint, &num_literal_contexts, &literal_context_map)
			}

			buildMetaBlockGreedy(data, uint(wrapped_last_flush_pos), mask, prev_byte, prev_byte2, literal_context_lut, num_literal_contexts, literal_context_map, commands, mb)
		} else {
			buildMetaBlock(data, uint(wrapped_last_flush_pos), mask, &block_params, prev_byte, prev_byte2, commands, literal_context_mode, mb)
		}

		if params.quality >= minQualityForOptimizeHistograms {
			/* The number of distance symbols effectively used for distance
			   histograms. It might be less than distance alphabet size
			   for "Large Window Brotli" (32-bit). */
			var num_effective_dist_codes uint32 = block_params.dist.alphabet_size
			if num_effective_dist_codes > numHistogramDistanceSymbols {
				num_effective_dist_codes = numHistogramDistanceSymbols
			}

			optimizeHistograms(num_effective_dist_codes, mb)
		}

		storeMetaBlock(data, uint(wrapped_last_flush_pos), bytes, mask, prev_byte, prev_byte2, is_last, &block_params, literal_context_mode, commands, mb, storage_ix, storage)
		freeMetaBlockSplit(mb)
	}

	if bytes+4 < *storage_ix>>3 {
		/* Restore the distance cache and last byte. */
		copy(dist_cache, saved_dist_cache[:4])

		storage[0] = byte(last_bytes)
		storage[1] = byte(last_bytes >> 8)
		*storage_ix = uint(last_bytes_bits)
		storeUncompressedMetaBlock(is_last, data, uint(wrapped_last_flush_pos), mask, bytes, storage_ix, storage)
	}
}

func chooseDistanceParams(params *encoderParams) {
	var distance_postfix_bits uint32 = 0
	var num_direct_distance_codes uint32 = 0

	if params.quality >= minQualityForNonzeroDistanceParams {
		var ndirect_msb uint32
		if params.mode == modeFont {
			distance_postfix_bits = 1
			num_direct_distance_codes = 12
		} else {
			distance_postfix_bits = params.dist.distance_postfix_bits
			num_direct_distance_codes = params.dist.num_direct_distance_codes
		}

		ndirect_msb = (num_direct_distance_codes >> distance_postfix_bits) & 0x0F
		if distance_postfix_bits > maxNpostfix || num_direct_distance_codes > maxNdirect || ndirect_msb<<distance_postfix_bits != num_direct_distance_codes {
			distance_postfix_bits = 0
			num_direct_distance_codes = 0
		}
	}

	initDistanceParams(params, distance_postfix_bits, num_direct_distance_codes)
}

func ensureInitialized(s *Writer) bool {
	if s.is_initialized_ {
		return true
	}

	s.last_bytes_bits_ = 0
	s.last_bytes_ = 0
	s.remaining_metadata_bytes_ = math.MaxUint32

	sanitizeParams(&s.params)
	s.params.lgblock = computeLgBlock(&s.params)
	chooseDistanceParams(&s.params)

	ringBufferSetup(&s.params, &s.ringbuffer_)

	/* Initialize last byte with stream header. */
	{
		var lgwin int = int(s.params.lgwin)
		if s.params.quality == fastOnePassCompressionQuality || s.params.quality == fastTwoPassCompressionQuality {
			lgwin = brotli_max_int(lgwin, 18)
		}

		encodeWindowBits(lgwin, s.params.large_window, &s.last_bytes_, &s.last_bytes_bits_)
	}

	if s.params.quality == fastOnePassCompressionQuality {
		s.cmd_depths_ = [128]byte{
			0, 4, 4, 5, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8,
			0, 0, 0, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7,
			7, 7, 10, 10, 10, 10, 10, 10, 0, 4, 4, 5, 5, 5, 6, 6,
			7, 8, 8, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
			5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
			6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4,
			4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 8, 10,
			12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
		}
		s.cmd_bits_ = [128]uint16{
			0, 0, 8, 9, 3, 35, 7, 71,
			39, 103, 23, 47, 175, 111, 239, 31,
			0, 0, 0, 4, 12, 2, 10, 6,
			13, 29, 11, 43, 27, 59, 87, 55,
			15, 79, 319, 831, 191, 703, 447, 959,
			0, 14, 1, 25, 5, 21, 19, 51,
			119, 159, 95, 223, 479, 991, 63, 575,
			127, 639, 383, 895, 255, 767, 511, 1023,
			14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
			27, 59, 7, 39, 23, 55, 30, 1, 17, 9, 25, 5, 0, 8, 4, 12,
			2, 10, 6, 21, 13, 29, 3, 19, 11, 15, 47, 31, 95, 63, 127, 255,
			767, 2815, 1791, 3839, 511, 2559, 1535, 3583, 1023, 3071, 2047, 4095,
		}
		s.cmd_code_ = [512]byte{
			0xff, 0x77, 0xd5, 0xbf, 0xe7, 0xde, 0xea, 0x9e, 0x51, 0x5d, 0xde, 0xc6,
			0x70, 0x57, 0xbc, 0x58, 0x58, 0x58, 0xd8, 0xd8, 0x58, 0xd5, 0xcb, 0x8c,
			0xea, 0xe0, 0xc3, 0x87, 0x1f, 0x83, 0xc1, 0x60, 0x1c, 0x67, 0xb2, 0xaa,
			0x06, 0x83, 0xc1, 0x60, 0x30, 0x18, 0xcc, 0xa1, 0xce, 0x88, 0x54, 0x94,
			0x46, 0xe1, 0xb0, 0xd0, 0x4e, 0xb2, 0xf7, 0x04, 0x00,
		}
		s.cmd_code_numbits_ = 448
	}

	s.is_initialized_ = true
	return true
}

func encoderInitParams(params *encoderParams) {
	params.mode = defaultMode
	params.large_window = false
	params.quality = defaultQuality
	params.lgwin = defaultWindow
	params.lgblock = 0
	params.size_hint = 0
	params.disable_literal_context_modeling = false
	initEncoderDictionary(&params.dictionary)
	params.dist.distance_postfix_bits = 0
	params.dist.num_direct_distance_codes = 0
	params.dist.alphabet_size = uint32(distanceAlphabetSize(0, 0, maxDistanceBits))
	params.dist.max_distance = maxDistance
}

func encoderInitState(s *Writer) {
	encoderInitParams(&s.params)
	s.input_pos_ = 0
	s.commands = s.commands[:0]
	s.num_literals_ = 0
	s.last_insert_len_ = 0
	s.last_flush_pos_ = 0
	s.last_processed_pos_ = 0
	s.prev_byte_ = 0
	s.prev_byte2_ = 0
	if s.hasher_ != nil {
		s.hasher_.Common().is_prepared_ = false
	}
	s.cmd_code_numbits_ = 0
	s.stream_state_ = streamProcessing
	s.is_last_block_emitted_ = false
	s.is_initialized_ = false

	ringBufferInit(&s.ringbuffer_)

	/* Initialize distance cache. */
	s.dist_cache_[0] = 4

	s.dist_cache_[1] = 11
	s.dist_cache_[2] = 15
	s.dist_cache_[3] = 16

	/* Save the state of the distance cache in case we need to restore it for
	   emitting an uncompressed block. */
	copy(s.saved_dist_cache_[:], s.dist_cache_[:])
}

/*
   Copies the given input data to the internal ring buffer of the compressor.
   No processing of the data occurs at this time and this function can be
   called multiple times before calling WriteBrotliData() to process the
   accumulated input. At most input_block_size() bytes of input data can be
   copied to the ring buffer, otherwise the next WriteBrotliData() will fail.
*/
func copyInputToRingBuffer(s *Writer, input_size uint, input_buffer []byte) {
	var ringbuffer_ *ringBuffer = &s.ringbuffer_
	ringBufferWrite(input_buffer, input_size, ringbuffer_)
	s.input_pos_ += uint64(input_size)

	/* TL;DR: If needed, initialize 7 more bytes in the ring buffer to make the
	   hashing not depend on uninitialized data. This makes compression
	   deterministic and it prevents uninitialized memory warnings in Valgrind.
	   Even without erasing, the output would be valid (but nondeterministic).

	   Background information: The compressor stores short (at most 8 bytes)
	   substrings of the input already read in a hash table, and detects
	   repetitions by looking up such substrings in the hash table. If it
	   can find a substring, it checks whether the substring is really there
	   in the ring buffer (or it's just a hash collision). Should the hash
	   table become corrupt, this check makes sure that the output is
	   still valid, albeit the compression ratio would be bad.

	   The compressor populates the hash table from the ring buffer as it's
	   reading new bytes from the input. However, at the last few indexes of
	   the ring buffer, there are not enough bytes to build full-length
	   substrings from. Since the hash table always contains full-length
	   substrings, we erase with dummy zeros here to make sure that those
	   substrings will contain zeros at the end instead of uninitialized
	   data.

	   Please note that erasing is not necessary (because the
	   memory region is already initialized since he ring buffer
	   has a `tail' that holds a copy of the beginning,) so we
	   skip erasing if we have already gone around at least once in
	   the ring buffer.

	   Only clear during the first round of ring-buffer writes. On
	   subsequent rounds data in the ring-buffer would be affected. */
	if ringbuffer_.pos_ <= ringbuffer_.mask_ {
		/* This is the first time when the ring buffer is being written.
		   We clear 7 bytes just after the bytes that have been copied from
		   the input buffer.

		   The ring-buffer has a "tail" that holds a copy of the beginning,
		   but only once the ring buffer has been fully written once, i.e.,
		   pos <= mask. For the first time, we need to write values
		   in this tail (where index may be larger than mask), so that
		   we have exactly defined behavior and don't read uninitialized
		   memory. Due to performance reasons, hashing reads data using a
		   LOAD64, which can go 7 bytes beyond the bytes written in the
		   ring-buffer. */
		for i := 0; i < int(7); i++ {
			ringbuffer_.buffer_[ringbuffer_.pos_:][i] = 0
		}
	}
}

/* Marks all input as processed.
   Returns true if position wrapping occurs. */
func updateLastProcessedPos(s *Writer) bool {
	var wrapped_last_processed_pos uint32 = wrapPosition(s.last_processed_pos_)
	var wrapped_input_pos uint32 = wrapPosition(s.input_pos_)
	s.last_processed_pos_ = s.input_pos_
	return wrapped_input_pos < wrapped_last_processed_pos
}

func extendLastCommand(s *Writer, bytes *uint32, wrapped_last_processed_pos *uint32) {
	var last_command *command = &s.commands[len(s.commands)-1]
	var data []byte = s.ringbuffer_.buffer_
	var mask uint32 = s.ringbuffer_.mask_
	var max_backward_distance uint64 = ((uint64(1)) << s.params.lgwin) - windowGap
	var last_copy_len uint64 = uint64(last_command.copy_len_) & 0x1FFFFFF
	var last_processed_pos uint64 = s.last_processed_pos_ - last_copy_len
	var max_distance uint64
	if last_processed_pos < max_backward_distance {
		max_distance = last_processed_pos
	} else {
		max_distance = max_backward_distance
	}
	var cmd_dist uint64 = uint64(s.dist_cache_[0])
	var distance_code uint32 = commandRestoreDistanceCode(last_command, &s.params.dist)
	if distance_code < numDistanceShortCodes || uint64(distance_code-(numDistanceShortCodes-1)) == cmd_dist {
		if cmd_dist <= max_distance {
			for *bytes != 0 && data[*wrapped_last_processed_pos&mask] == data[(uint64(*wrapped_last_processed_pos)-cmd_dist)&uint64(mask)] {
				last_command.copy_len_++
				(*bytes)--
				(*wrapped_last_processed_pos)++
			}
		}

		/* The copy length is at most the metablock size, and thus expressible. */
		getLengthCode(uint(last_command.insert_len_), uint(int(last_command.copy_len_&0x1FFFFFF)+int(last_command.copy_len_>>25)), (last_command.dist_prefix_&0x3FF == 0), &last_command.cmd_prefix_)
	}
}

/*
   Processes the accumulated input data and writes
   the new output meta-block to s.dest, if one has been
   created (otherwise the processed input data is buffered internally).
   If |is_last| or |force_flush| is true, an output meta-block is
   always created. However, until |is_last| is true encoder may retain up
   to 7 bits of the last byte of output. To force encoder to dump the remaining
   bits use WriteMetadata() to append an empty meta-data block.
   Returns false if the size of the input data is larger than
   input_block_size().
*/
func encodeData(s *Writer, is_last bool, force_flush bool) bool {
	var delta uint64 = unprocessedInputSize(s)
	var bytes uint32 = uint32(delta)
	var wrapped_last_processed_pos uint32 = wrapPosition(s.last_processed_pos_)
	var data []byte
	var mask uint32
	var literal_context_mode int

	data = s.ringbuffer_.buffer_
	mask = s.ringbuffer_.mask_

	/* Adding more blocks after "last" block is forbidden. */
	if s.is_last_block_emitted_ {
		return false
	}
	if is_last {
		s.is_last_block_emitted_ = true
	}

	if delta > uint64(inputBlockSize(s)) {
		return false
	}

	if s.params.quality == fastTwoPassCompressionQuality {
		if s.command_buf_ == nil || cap(s.command_buf_) < int(kCompressFragmentTwoPassBlockSize) {
			s.command_buf_ = make([]uint32, kCompressFragmentTwoPassBlockSize)
			s.literal_buf_ = make([]byte, kCompressFragmentTwoPassBlockSize)
		} else {
			s.command_buf_ = s.command_buf_[:kCompressFragmentTwoPassBlockSize]
			s.literal_buf_ = s.literal_buf_[:kCompressFragmentTwoPassBlockSize]
		}
	}

	if s.params.quality == fastOnePassCompressionQuality || s.params.quality == fastTwoPassCompressionQuality {
		var storage []byte
		var storage_ix uint = uint(s.last_bytes_bits_)
		var table_size uint
		var table []int

		if delta == 0 && !is_last {
			/* We have no new input data and we don't have to finish the stream, so
			   nothing to do. */
			return true
		}

		storage = s.getStorage(int(2*bytes + 503))
		storage[0] = byte(s.last_bytes_)
		storage[1] = byte(s.last_bytes_ >> 8)
		table = getHashTable(s, s.params.quality, uint(bytes), &table_size)
		if s.params.quality == fastOnePassCompressionQuality {
			compressFragmentFast(data[wrapped_last_processed_pos&mask:], uint(bytes), is_last, table, table_size, s.cmd_depths_[:], s.cmd_bits_[:], &s.cmd_code_numbits_, s.cmd_code_[:], &storage_ix, storage)
		} else {
			compressFragmentTwoPass(data[wrapped_last_processed_pos&mask:], uint(bytes), is_last, s.command_buf_, s.literal_buf_, table, table_size, &storage_ix, storage)
		}

		s.last_bytes_ = uint16(storage[storage_ix>>3])
		s.last_bytes_bits_ = byte(storage_ix & 7)
		updateLastProcessedPos(s)
		s.writeOutput(storage[:storage_ix>>3])
		return true
	}
	{
		/* Theoretical max number of commands is 1 per 2 bytes. */
		newsize := len(s.commands) + int(bytes)/2 + 1
		if newsize > cap(s.commands) {
			/* Reserve a bit more memory to allow merging with a next block
			   without reallocation: that would impact speed. */
			newsize += int(bytes/4) + 16

			new_commands := make([]command, len(s.commands), newsize)
			if s.commands != nil {
				copy(new_commands, s.commands)
			}

			s.commands = new_commands
		}
	}

	initOrStitchToPreviousBlock(&s.hasher_, data, uint(mask), &s.params, uint(wrapped_last_processed_pos), uint(bytes), is_last)

	literal_context_mode = chooseContextMode(&s.params, data, uint(wrapPosition(s.last_flush_pos_)), uint(mask), uint(s.input_pos_-s.last_flush_pos_))

	if len(s.commands) != 0 && s.last_insert_len_ == 0 {
		extendLastCommand(s, &bytes, &wrapped_last_processed_pos)
	}

	if s.params.quality == zopflificationQuality {
		assert(s.params.hasher.type_ == 10)
		createZopfliBackwardReferences(uint(bytes), uint(wrapped_last_processed_pos), data, uint(mask), &s.params, s.hasher_.(*h10), s.dist_cache_[:], &s.last_insert_len_, &s.commands, &s.num_literals_)
	} else if s.params.quality == hqZopflificationQuality {
		assert(s.params.hasher.type_ == 10)
		createHqZopfliBackwardReferences(uint(bytes), uint(wrapped_last_processed_pos), data, uint(mask), &s.params, s.hasher_, s.dist_cache_[:], &s.last_insert_len_, &s.commands, &s.num_literals_)
	} else {
		createBackwardReferences(uint(bytes), uint(wrapped_last_processed_pos), data, uint(mask), &s.params, s.hasher_, s.dist_cache_[:], &s.last_insert_len_, &s.commands, &s.num_literals_)
	}
	{
		var max_length uint = maxMetablockSize(&s.params)
		var max_literals uint = max_length / 8
		max_commands := int(max_length / 8)
		var processed_bytes uint = uint(s.input_pos_ - s.last_flush_pos_)
		var next_input_fits_metablock bool = (processed_bytes+inputBlockSize(s) <= max_length)
		var should_flush bool = (s.params.quality < minQualityForBlockSplit && s.num_literals_+uint(len(s.commands)) >= maxNumDelayedSymbols)
		/* If maximal possible additional block doesn't fit metablock, flush now. */
		/* TODO: Postpone decision until next block arrives? */

		/* If block splitting is not used, then flush as soon as there is some
		   amount of commands / literals produced. */
		if !is_last && !force_flush && !should_flush && next_input_fits_metablock && s.num_literals_ < max_literals && len(s.commands) < max_commands {
			/* Merge with next input block. Everything will happen later. */
			if updateLastProcessedPos(s) {
				hasherReset(s.hasher_)
			}

			return true
		}
	}

	/* Create the last insert-only command. */
	if s.last_insert_len_ > 0 {
		s.commands = append(s.commands, makeInsertCommand(s.last_insert_len_))
		s.num_literals_ += s.last_insert_len_
		s.last_insert_len_ = 0
	}

	if !is_last && s.input_pos_ == s.last_flush_pos_ {
		/* We have no new input data and we don't have to finish the stream, so
		   nothing to do. */
		return true
	}

	assert(s.input_pos_ >= s.last_flush_pos_)
	assert(s.input_pos_ > s.last_flush_pos_ || is_last)
	assert(s.input_pos_-s.last_flush_pos_ <= 1<<24)
	{
		var metablock_size uint32 = uint32(s.input_pos_ - s.last_flush_pos_)
		var storage []byte = s.getStorage(int(2*metablock_size + 503))
		var storage_ix uint = uint(s.last_bytes_bits_)
		storage[0] = byte(s.last_bytes_)
		storage[1] = byte(s.last_bytes_ >> 8)
		writeMetaBlockInternal(data, uint(mask), s.last_flush_pos_, uint(metablock_size), is_last, literal_context_mode, &s.params, s.prev_byte_, s.prev_byte2_, s.num_literals_, s.commands, s.saved_dist_cache_[:], s.dist_cache_[:], &storage_ix, storage)
		s.last_bytes_ = uint16(storage[storage_ix>>3])
		s.last_bytes_bits_ = byte(storage_ix & 7)
		s.last_flush_pos_ = s.input_pos_
		if updateLastProcessedPos(s) {
			hasherReset(s.hasher_)
		}

		if s.last_flush_pos_ > 0 {
			s.prev_byte_ = data[(uint32(s.last_flush_pos_)-1)&mask]
		}

		if s.last_flush_pos_ > 1 {
			s.prev_byte2_ = data[uint32(s.last_flush_pos_-2)&mask]
		}

		s.commands = s.commands[:0]
		s.num_literals_ = 0

		/* Save the state of the distance cache in case we need to restore it for
		   emitting an uncompressed block. */
		copy(s.saved_dist_cache_[:], s.dist_cache_[:])

		s.writeOutput(storage[:storage_ix>>3])
		return true
	}
}

/* Dumps remaining output bits and metadata header to |header|.
   Returns number of produced bytes.
   REQUIRED: |header| should be 8-byte aligned and at least 16 bytes long.
   REQUIRED: |block_size| <= (1 << 24). */
func writeMetadataHeader(s *Writer, block_size uint, header []byte) uint {
	storage_ix := uint(s.last_bytes_bits_)
	header[0] = byte(s.last_bytes_)
	header[1] = byte(s.last_bytes_ >> 8)
	s.last_bytes_ = 0
	s.last_bytes_bits_ = 0

	writeBits(1, 0, &storage_ix, header)
	writeBits(2, 3, &storage_ix, header)
	writeBits(1, 0, &storage_ix, header)
	if block_size == 0 {
		writeBits(2, 0, &storage_ix, header)
	} else {
		var nbits uint32
		if block_size == 1 {
			nbits = 0
		} else {
			nbits = log2FloorNonZero(uint(uint32(block_size)-1)) + 1
		}
		var nbytes uint32 = (nbits + 7) / 8
		writeBits(2, uint64(nbytes), &storage_ix, header)
		writeBits(uint(8*nbytes), uint64(block_size)-1, &storage_ix, header)
	}

	return (storage_ix + 7) >> 3
}

func injectBytePaddingBlock(s *Writer) {
	var seal uint32 = uint32(s.last_bytes_)
	var seal_bits uint = uint(s.last_bytes_bits_)
	s.last_bytes_ = 0
	s.last_bytes_bits_ = 0

	/* is_last = 0, data_nibbles = 11, reserved = 0, meta_nibbles = 00 */
	seal |= 0x6 << seal_bits

	seal_bits += 6

	destination := s.tiny_buf_.u8[:]

	destination[0] = byte(seal)
	if seal_bits > 8 {
		destination[1] = byte(seal >> 8)
	}
	if seal_bits > 16 {
		destination[2] = byte(seal >> 16)
	}
	s.writeOutput(destination[:(seal_bits+7)>>3])
}

func checkFlushComplete(s *Writer) {
	if s.stream_state_ == streamFlushRequested && s.err == nil {
		s.stream_state_ = streamProcessing
	}
}

func encoderCompressStreamFast(s *Writer, op int, available_in *uint, next_in *[]byte) bool {
	var block_size_limit uint = uint(1) << s.params.lgwin
	var buf_size uint = brotli_min_size_t(kCompressFragmentTwoPassBlockSize, brotli_min_size_t(*available_in, block_size_limit))
	var command_buf []uint32 = nil
	var literal_buf []byte = nil
	if s.params.quality != fastOnePassCompressionQuality && s.params.quality != fastTwoPassCompressionQuality {
		return false
	}

	if s.params.quality == fastTwoPassCompressionQuality {
		if s.command_buf_ == nil || cap(s.command_buf_) < int(buf_size) {
			s.command_buf_ = make([]uint32, buf_size)
			s.literal_buf_ = make([]byte, buf_size)
		} else {
			s.command_buf_ = s.command_buf_[:buf_size]
			s.literal_buf_ = s.literal_buf_[:buf_size]
		}

		command_buf = s.command_buf_
		literal_buf = s.literal_buf_
	}

	for {
		if s.stream_state_ == streamFlushRequested && s.last_bytes_bits_ != 0 {
			injectBytePaddingBlock(s)
			continue
		}

		/* Compress block only when stream is not
		   finished, there is no pending flush request, and there is either
		   additional input or pending operation. */
		if s.stream_state_ == streamProcessing && (*available_in != 0 || op != int(operationProcess)) {
			var block_size uint = brotli_min_size_t(block_size_limit, *available_in)
			var is_last bool = (*available_in == block_size) && (op == int(operationFinish))
			var force_flush bool = (*available_in == block_size) && (op == int(operationFlush))
			var max_out_size uint = 2*block_size + 503
			var storage []byte = nil
			var storage_ix uint = uint(s.last_bytes_bits_)
			var table_size uint
			var table []int

			if force_flush && block_size == 0 {
				s.stream_state_ = streamFlushRequested
				continue
			}

			storage = s.getStorage(int(max_out_size))

			storage[0] = byte(s.last_bytes_)
			storage[1] = byte(s.last_bytes_ >> 8)
			table = getHashTable(s, s.params.quality, block_size, &table_size)

			if s.params.quality == fastOnePassCompressionQuality {
				compressFragmentFast(*next_in, block_size, is_last, table, table_size, s.cmd_depths_[:], s.cmd_bits_[:], &s.cmd_code_numbits_, s.cmd_code_[:], &storage_ix, storage)
			} else {
				compressFragmentTwoPass(*next_in, block_size, is_last, command_buf, literal_buf, table, table_size, &storage_ix, storage)
			}

			*next_in = (*next_in)[block_size:]
			*available_in -= block_size
			var out_bytes uint = storage_ix >> 3
			s.writeOutput(storage[:out_bytes])

			s.last_bytes_ = uint16(storage[storage_ix>>3])
			s.last_bytes_bits_ = byte(storage_ix & 7)

			if force_flush {
				s.stream_state_ = streamFlushRequested
			}
			if is_last {
				s.stream_state_ = streamFinished
			}
			continue
		}

		break
	}

	checkFlushComplete(s)
	return true
}

func processMetadata(s *Writer, available_in *uint, next_in *[]byte) bool {
	if *available_in > 1<<24 {
		return false
	}

	/* Switch to metadata block workflow, if required. */
	if s.stream_state_ == streamProcessing {
		s.remaining_metadata_bytes_ = uint32(*available_in)
		s.stream_state_ = streamMetadataHead
	}

	if s.stream_state_ != streamMetadataHead && s.stream_state_ != streamMetadataBody {
		return false
	}

	for {
		if s.stream_state_ == streamFlushRequested && s.last_bytes_bits_ != 0 {
			injectBytePaddingBlock(s)
			continue
		}

		if s.input_pos_ != s.last_flush_pos_ {
			var result bool = encodeData(s, false, true)
			if !result {
				return false
			}
			continue
		}

		if s.stream_state_ == streamMetadataHead {
			n := writeMetadataHeader(s, uint(s.remaining_metadata_bytes_), s.tiny_buf_.u8[:])
			s.writeOutput(s.tiny_buf_.u8[:n])
			s.stream_state_ = streamMetadataBody
			continue
		} else {
			/* Exit workflow only when there is no more input and no more output.
			   Otherwise client may continue producing empty metadata blocks. */
			if s.remaining_metadata_bytes_ == 0 {
				s.remaining_metadata_bytes_ = math.MaxUint32
				s.stream_state_ = streamProcessing
				break
			}

			/* This guarantees progress in "TakeOutput" workflow. */
			var c uint32 = brotli_min_uint32_t(s.remaining_metadata_bytes_, 16)
			copy(s.tiny_buf_.u8[:], (*next_in)[:c])
			*next_in = (*next_in)[c:]
			*available_in -= uint(c)
			s.remaining_metadata_bytes_ -= c
			s.writeOutput(s.tiny_buf_.u8[:c])

			continue
		}
	}

	return true
}

func updateSizeHint(s *Writer, available_in uint) {
	if s.params.size_hint == 0 {
		var delta uint64 = unprocessedInputSize(s)
		var tail uint64 = uint64(available_in)
		var limit uint32 = 1 << 30
		var total uint32
		if (delta >= uint64(limit)) || (tail >= uint64(limit)) || ((delta + tail) >= uint64(limit)) {
			total = limit
		} else {
			total = uint32(delta + tail)
		}

		s.params.size_hint = uint(total)
	}
}

func encoderCompressStream(s *Writer, op int, available_in *uint, next_in *[]byte) bool {
	if !ensureInitialized(s) {
		return false
	}

	/* Unfinished metadata block; check requirements. */
	if s.remaining_metadata_bytes_ != math.MaxUint32 {
		if uint32(*available_in) != s.remaining_metadata_bytes_ {
			return false
		}
		if op != int(operationEmitMetadata) {
			return false
		}
	}

	if op == int(operationEmitMetadata) {
		updateSizeHint(s, 0) /* First data metablock might be emitted here. */
		return processMetadata(s, available_in, next_in)
	}

	if s.stream_state_ == streamMetadataHead || s.stream_state_ == streamMetadataBody {
		return false
	}

	if s.stream_state_ != streamProcessing && *available_in != 0 {
		return false
	}

	if s.params.quality == fastOnePassCompressionQuality || s.params.quality == fastTwoPassCompressionQuality {
		return encoderCompressStreamFast(s, op, available_in, next_in)
	}

	for {
		var remaining_block_size uint = remainingInputBlockSize(s)

		if remaining_block_size != 0 && *available_in != 0 {
			var copy_input_size uint = brotli_min_size_t(remaining_block_size, *available_in)
			copyInputToRingBuffer(s, copy_input_size, *next_in)
			*next_in = (*next_in)[copy_input_size:]
			*available_in -= copy_input_size
			continue
		}

		if s.stream_state_ == streamFlushRequested && s.last_bytes_bits_ != 0 {
			injectBytePaddingBlock(s)
			continue
		}

		/* Compress data only when stream is not
		   finished and there is no pending flush request. */
		if s.stream_state_ == streamProcessing {
			if remaining_block_size == 0 || op != int(operationProcess) {
				var is_last bool = ((*available_in == 0) && op == int(operationFinish))
				var force_flush bool = ((*available_in == 0) && op == int(operationFlush))
				var result bool
				updateSizeHint(s, *available_in)
				result = encodeData(s, is_last, force_flush)
				if !result {
					return false
				}
				if force_flush {
					s.stream_state_ = streamFlushRequested
				}
				if is_last {
					s.stream_state_ = streamFinished
				}
				continue
			}
		}

		break
	}

	checkFlushComplete(s)
	return true
}

func (w *Writer) writeOutput(data []byte) {
	if w.err != nil {
		return
	}

	_, w.err = w.dst.Write(data)
	if w.err == nil {
		checkFlushComplete(w)
	}
}