1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
|
package proto
import (
"math"
"github.com/go-faster/errors"
)
// Compile-time assertions for ColLowCardinality.
var (
_ ColInput = (*ColLowCardinality[string])(nil)
_ ColResult = (*ColLowCardinality[string])(nil)
_ Column = (*ColLowCardinality[string])(nil)
)
//go:generate go run github.com/dmarkham/enumer -type CardinalityKey -trimprefix Key -output col_low_cardinality_enum.go
// CardinalityKey is integer type of ColLowCardinality.Keys column.
type CardinalityKey byte
// Possible integer types for ColLowCardinality.Keys.
const (
KeyUInt8 CardinalityKey = 0
KeyUInt16 CardinalityKey = 1
KeyUInt32 CardinalityKey = 2
KeyUInt64 CardinalityKey = 3
)
// Constants for low cardinality metadata value that is represented as int64
// consisted of bitflags and key type.
//
// https://github.com/ClickHouse/clickhouse-cpp/blob/b10d71eed0532405dfb4dd03aabce869ba68f581/clickhouse/columns/lowcardinality.cpp
//
// NB: shared dictionaries and on-the-fly dictionary update is not supported,
// because it is not currently used in client protocol.
const (
cardinalityKeyMask = 0b0000_1111_1111 // last byte
// Need to read dictionary if it wasn't.
cardinalityNeedGlobalDictionaryBit = 1 << 8
// Need to read additional keys.
// Additional keys are stored before indexes as value N and N keys
// after them.
cardinalityHasAdditionalKeysBit = 1 << 9
// Need to update dictionary. It means that previous granule has different dictionary.
cardinalityNeedUpdateDictionary = 1 << 10
// cardinalityUpdateAll sets both flags (update index, has additional keys)
cardinalityUpdateAll = cardinalityHasAdditionalKeysBit | cardinalityNeedUpdateDictionary
)
type keySerializationVersion byte
// sharedDictionariesWithAdditionalKeys is default key serialization.
const sharedDictionariesWithAdditionalKeys keySerializationVersion = 1
// ColLowCardinality is generic LowCardinality(T) column.
//
// ColLowCardinality contains index and keys columns.
//
// Index (i.e. dictionary) column contains unique values, Keys column contains
// sequence of indexes in Index column that represent actual values.
//
// For example, ["Eko", "Eko", "Amadela", "Amadela", "Amadela", "Amadela"] can
// be encoded as:
//
// Index: ["Eko", "Amadela"] (String)
// Keys: [0, 0, 1, 1, 1, 1] (UInt8)
//
// The CardinalityKey is chosen depending on Index size, i.e. maximum value
// of chosen type should be able to represent any index of Index element.
type ColLowCardinality[T comparable] struct {
Values []T
index ColumnOf[T]
key CardinalityKey
// Keeping all key column variants as fields to reuse
// memory more efficiently.
// Values[T], kv and keys columns adds memory overhead, but simplifies
// implementation.
// TODO(ernado): revisit tradeoffs
keys8 ColUInt8
keys16 ColUInt16
keys32 ColUInt32
keys64 ColUInt64
kv map[T]int
keys []int
}
// DecodeState implements StateDecoder, ensuring state for index column.
func (c *ColLowCardinality[T]) DecodeState(r *Reader) error {
keySerialization, err := r.Int64()
if err != nil {
return errors.Wrap(err, "version")
}
if keySerialization != int64(sharedDictionariesWithAdditionalKeys) {
return errors.Errorf("got version %d, expected %d",
keySerialization, sharedDictionariesWithAdditionalKeys,
)
}
if s, ok := c.index.(StateDecoder); ok {
if err := s.DecodeState(r); err != nil {
return errors.Wrap(err, "index state")
}
}
return nil
}
// EncodeState implements StateEncoder, ensuring state for index column.
func (c ColLowCardinality[T]) EncodeState(b *Buffer) {
// Writing key serialization version.
b.PutInt64(int64(sharedDictionariesWithAdditionalKeys))
if s, ok := c.index.(StateEncoder); ok {
s.EncodeState(b)
}
}
func (c *ColLowCardinality[T]) DecodeColumn(r *Reader, rows int) error {
if rows == 0 {
// Skipping entirely of no rows.
return nil
}
meta, err := r.Int64()
if err != nil {
return errors.Wrap(err, "meta")
}
if (meta & cardinalityNeedGlobalDictionaryBit) == 1 {
return errors.New("global dictionary is not supported")
}
if (meta & cardinalityHasAdditionalKeysBit) == 0 {
return errors.New("additional keys bit is missing")
}
key := CardinalityKey(meta & cardinalityKeyMask)
if !key.IsACardinalityKey() {
return errors.Errorf("invalid low cardinality keys type %d", key)
}
c.key = key
indexRows, err := r.Int64()
if err != nil {
return errors.Wrap(err, "index size")
}
if err := checkRows(int(indexRows)); err != nil {
return errors.Wrap(err, "index size")
}
if err := c.index.DecodeColumn(r, int(indexRows)); err != nil {
return errors.Wrap(err, "index column")
}
keyRows, err := r.Int64()
if err != nil {
return errors.Wrap(err, "keys size")
}
if err := checkRows(int(keyRows)); err != nil {
return errors.Wrap(err, "index size")
}
switch c.key {
case KeyUInt8:
if err := c.keys8.DecodeColumn(r, rows); err != nil {
return errors.Wrap(err, "keys")
}
c.keys = fillValues(c.keys, c.keys8)
case KeyUInt16:
if err := c.keys16.DecodeColumn(r, rows); err != nil {
return errors.Wrap(err, "keys")
}
c.keys = fillValues(c.keys, c.keys16)
case KeyUInt32:
if err := c.keys32.DecodeColumn(r, rows); err != nil {
return errors.Wrap(err, "keys")
}
c.keys = fillValues(c.keys, c.keys32)
case KeyUInt64:
if err := c.keys64.DecodeColumn(r, rows); err != nil {
return errors.Wrap(err, "keys")
}
c.keys = fillValues(c.keys, c.keys64)
default:
return errors.Errorf("invalid key format %s", c.key)
}
c.Values = c.Values[:0]
for _, idx := range c.keys {
if int64(idx) >= indexRows || idx < 0 {
return errors.Errorf("key index out of range [%d] with length %d", idx, indexRows)
}
c.Values = append(c.Values, c.index.Row(idx))
}
return nil
}
func (c ColLowCardinality[T]) Type() ColumnType {
return ColumnTypeLowCardinality.Sub(c.index.Type())
}
func (c *ColLowCardinality[T]) EncodeColumn(b *Buffer) {
// Using pointer receiver as Prepare() is expected to be called before
// encoding.
if c.Rows() == 0 {
// Skipping encoding entirely.
return
}
// Meta encodes whether reader should update
// low cardinality metadata and keys column type.
meta := cardinalityUpdateAll | int64(c.key)
b.PutInt64(meta)
// Writing index (dictionary).
b.PutInt64(int64(c.index.Rows()))
c.index.EncodeColumn(b)
b.PutInt64(int64(c.Rows()))
switch c.key {
case KeyUInt8:
c.keys8.EncodeColumn(b)
case KeyUInt16:
c.keys16.EncodeColumn(b)
case KeyUInt32:
c.keys32.EncodeColumn(b)
case KeyUInt64:
c.keys64.EncodeColumn(b)
}
}
func (c *ColLowCardinality[T]) Reset() {
for k := range c.kv {
delete(c.kv, k)
}
c.keys = c.keys[:0]
c.keys8 = c.keys8[:0]
c.keys16 = c.keys16[:0]
c.keys32 = c.keys32[:0]
c.keys64 = c.keys64[:0]
c.Values = c.Values[:0]
c.index.Reset()
}
type cardinalityKeyValue interface {
~uint8 | ~uint16 | ~uint32 | ~uint64
}
func fillKeys[K cardinalityKeyValue](values []int, keys []K) []K {
keys = keys[:0]
for _, v := range values {
keys = append(keys, K(v))
}
return keys
}
func fillValues[K cardinalityKeyValue](values []int, keys []K) []int {
for _, v := range keys {
values = append(values, int(v))
}
return values
}
// Append value to column.
func (c *ColLowCardinality[T]) Append(v T) {
c.Values = append(c.Values, v)
}
// AppendArr appends slice to column.
func (c *ColLowCardinality[T]) AppendArr(v []T) {
c.Values = append(c.Values, v...)
}
// Row returns i-th row.
func (c ColLowCardinality[T]) Row(i int) T {
return c.Values[i]
}
// Rows returns rows count.
func (c ColLowCardinality[T]) Rows() int {
return len(c.Values)
}
// Prepare column for ingestion.
func (c *ColLowCardinality[T]) Prepare() error {
// Select minimum possible size for key.
if n := len(c.Values); n < math.MaxUint8 {
c.key = KeyUInt8
} else if n < math.MaxUint16 {
c.key = KeyUInt16
} else if uint32(n) < math.MaxUint32 {
c.key = KeyUInt32
} else {
c.key = KeyUInt64
}
// Allocate keys slice.
c.keys = append(c.keys[:0], make([]int, len(c.Values))...)
if c.kv == nil {
c.kv = map[T]int{}
c.index.Reset()
}
// Fill keys with value indexes.
var last int
for i, v := range c.Values {
idx, ok := c.kv[v]
if !ok {
c.index.Append(v)
c.kv[v] = last
idx = last
last++
}
c.keys[i] = idx
}
// Fill key column with key indexes.
switch c.key {
case KeyUInt8:
c.keys8 = fillKeys(c.keys, c.keys8)
case KeyUInt16:
c.keys16 = fillKeys(c.keys, c.keys16)
case KeyUInt32:
c.keys32 = fillKeys(c.keys, c.keys32)
case KeyUInt64:
c.keys64 = fillKeys(c.keys, c.keys64)
}
return nil
}
// Array is helper that creates Array(ColLowCardinality(T)).
func (c *ColLowCardinality[T]) Array() *ColArr[T] {
return &ColArr[T]{
Data: c,
}
}
// NewLowCardinality creates new LowCardinality column from another column for T.
func NewLowCardinality[T comparable](c ColumnOf[T]) *ColLowCardinality[T] {
return &ColLowCardinality[T]{
index: c,
}
}
|