1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
|
#include "tdigest.h"
#include <library/cpp/tdigest/tdigest.pb.h>
#include <cmath>
// TODO: rewrite to https://github.com/tdunning/t-digest/blob/master/src/main/java/com/tdunning/math/stats/MergingDigest.java
TDigest::TDigest(double delta, double k)
: N(0)
, Delta(delta)
, K(k)
{
}
TDigest::TDigest(double delta, double k, double firstValue)
: TDigest(delta, k)
{
AddValue(firstValue);
}
TDigest::TDigest(TStringBuf serializedDigest)
: N(0)
{
NTDigest::TDigest digest;
Y_ABORT_UNLESS(digest.ParseFromArray(serializedDigest.data(), serializedDigest.size()));
Delta = digest.delta();
K = digest.k();
for (int i = 0; i < digest.centroids_size(); ++i) {
const NTDigest::TDigest::TCentroid& centroid = digest.centroids(i);
Update(centroid.mean(), centroid.weight());
}
}
TDigest::TDigest(const TDigest* digest1, const TDigest* digest2)
: N(0)
, Delta(std::min(digest1->Delta, digest2->Delta))
, K(std::max(digest1->K, digest2->K))
{
Add(*digest1);
Add(*digest2);
}
void TDigest::Add(const TDigest& otherDigest) {
for (auto& it : otherDigest.Centroids)
Update(it.Mean, it.Count);
for (auto& it : otherDigest.Unmerged)
Update(it.Mean, it.Count);
}
TDigest TDigest::operator+(const TDigest& other) {
TDigest T(Delta, K);
T.Add(*this);
T.Add(other);
return T;
}
TDigest& TDigest::operator+=(const TDigest& other) {
Add(other);
return *this;
}
void TDigest::AddCentroid(const TCentroid& centroid) {
Unmerged.push_back(centroid);
N += centroid.Count;
}
double TDigest::GetThreshold(double q) {
return 4 * N * Delta * q * (1 - q);
}
void TDigest::MergeCentroid(TVector<TCentroid>& merged, double& sum, const TCentroid& centroid) {
if (merged.empty()) {
merged.push_back(centroid);
sum += centroid.Count;
return;
}
// Use quantile that has the tightest k
double q1 = (sum - merged.back().Count * 0.5) / N;
double q2 = (sum + centroid.Count * 0.5) / N;
double k = GetThreshold(q1);
double k2 = GetThreshold(q2);
if (k > k2) {
k = k2;
}
if (merged.back().Count + centroid.Count <= k) {
merged.back().Update(centroid.Mean, centroid.Count);
} else {
merged.push_back(centroid);
}
sum += centroid.Count;
}
void TDigest::Update(double x, double w) {
AddCentroid(TCentroid(x, w));
if (Unmerged.size() >= K / Delta) {
Compress();
}
}
void TDigest::Compress() {
if (Unmerged.empty())
return;
// Merge Centroids and Unmerged into Merged
std::stable_sort(Unmerged.begin(), Unmerged.end());
Merged.clear();
double sum = 0;
iter_t i = Centroids.begin();
iter_t j = Unmerged.begin();
while (i != Centroids.end() && j != Unmerged.end()) {
if (i->Mean <= j->Mean) {
MergeCentroid(Merged, sum, *i++);
} else {
MergeCentroid(Merged, sum, *j++);
}
}
while (i != Centroids.end()) {
MergeCentroid(Merged, sum, *i++);
}
while (j != Unmerged.end()) {
MergeCentroid(Merged, sum, *j++);
}
swap(Centroids, Merged);
Unmerged.clear();
}
void TDigest::Clear() {
Centroids.clear();
Unmerged.clear();
N = 0;
}
void TDigest::AddValue(double value) {
Update(value, 1);
}
double TDigest::GetPercentile(double percentile) {
Compress();
if (Centroids.empty())
return 0.0;
// This algorithm uses C=1/2 with 0.5 optimized away
// See https://en.wikipedia.org/wiki/Percentile#First_Variant.2C
double x = percentile * N;
double sum = 0.0;
double prev_x = 0;
double prev_mean = Centroids.front().Mean;
for (const auto& C : Centroids) {
double current_x = sum + C.Count * 0.5;
if (x <= current_x) {
double k = (x - prev_x) / (current_x - prev_x);
return prev_mean + k * (C.Mean - prev_mean);
}
sum += C.Count;
prev_x = current_x;
prev_mean = C.Mean;
}
return Centroids.back().Mean;
}
double TDigest::GetRank(double value) {
Compress();
if (Centroids.empty()) {
return 0.0;
}
if (value < Centroids.front().Mean) {
return 0.0;
}
if (value == Centroids.front().Mean) {
return Centroids.front().Count * 0.5 / N;
}
double sum = 0.0;
double prev_x = 0.0;
double prev_mean = Centroids.front().Mean;
for (const auto& C : Centroids) {
double current_x = sum + C.Count * 0.5;
if (value <= C.Mean) {
double k = (value - prev_mean) / (C.Mean - prev_mean);
return (prev_x + k * (current_x - prev_x)) / N;
}
sum += C.Count;
prev_mean = C.Mean;
prev_x = current_x;
}
return 1.0;
}
TString TDigest::Serialize() {
Compress();
NTDigest::TDigest digest;
digest.set_delta(Delta);
digest.set_k(K);
for (const auto& it : Centroids) {
NTDigest::TDigest::TCentroid* centroid = digest.add_centroids();
centroid->set_mean(it.Mean);
centroid->set_weight(it.Count);
}
return digest.SerializeAsString();
}
i64 TDigest::GetCount() const {
return std::llround(N);
}
|