1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
|
#pragma once
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <library/cpp/malloc/api/malloc.h>
#include <util/system/compat.h>
#include <util/system/compiler.h>
#include <util/system/types.h>
#ifdef _MSC_VER
#ifndef _CRT_SECURE_NO_WARNINGS
#define _CRT_SECURE_NO_WARNINGS
#endif
#ifdef _M_X64
#define _64_
#endif
#include <intrin.h>
#define WIN32_LEAN_AND_MEAN
#include <Windows.h>
#pragma intrinsic(_InterlockedCompareExchange)
#pragma intrinsic(_InterlockedExchangeAdd)
#include <new>
#include <assert.h>
#include <errno.h>
#define PERTHREAD __declspec(thread)
#define _win_
#define Y_FORCE_INLINE __forceinline
using TAtomic = volatile long;
static inline long AtomicAdd(TAtomic& a, long b) {
return _InterlockedExchangeAdd(&a, b) + b;
}
static inline long AtomicSub(TAtomic& a, long b) {
return AtomicAdd(a, -b);
}
#pragma comment(lib, "synchronization.lib")
#ifndef NDEBUG
#define Y_ASSERT_NOBT(x) \
{ \
if (IsDebuggerPresent()) { \
if (!(x)) \
__debugbreak(); \
} else \
assert(x); \
}
#else
#define Y_ASSERT_NOBT(x) ((void)0)
#endif
#else
#include <util/system/defaults.h>
#include <util/system/atomic.h>
#include <util/system/yassert.h>
#if !defined(NDEBUG) && !defined(__GCCXML__)
#define Y_ASSERT_NOBT(a) \
do { \
try { \
if (Y_UNLIKELY(!(a))) { \
if (YaIsDebuggerPresent()) \
__debugbreak(); \
else { \
assert(false && (a)); \
} \
} \
} catch (...) { \
if (YaIsDebuggerPresent()) \
__debugbreak(); \
else { \
assert(false && "Exception during assert"); \
} \
} \
} while (0)
#else
#define Y_ASSERT_NOBT(a) \
do { \
if (false) { \
bool __xxx = static_cast<bool>(a); \
Y_UNUSED(__xxx); \
} \
} while (0)
#endif
#include <pthread.h>
#include <sys/mman.h>
#include <stdlib.h>
#include <memory.h>
#include <new>
#include <errno.h>
#if defined(_linux_)
#include <linux/futex.h>
#include <sys/syscall.h>
#if !defined(MADV_HUGEPAGE)
#define MADV_HUGEPAGE 14
#endif
#if !defined(MAP_HUGETLB)
#define MAP_HUGETLB 0x40000
#endif
#endif
#define PERTHREAD __thread
#endif
#ifndef _darwin_
#ifndef Y_ARRAY_SIZE
#define Y_ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
#endif
#ifndef NDEBUG
#define DBG_FILL_MEMORY
static bool FillMemoryOnAllocation = true;
#endif
static bool TransparentHugePages = false; // force MADV_HUGEPAGE for large allocs
static bool MapHugeTLB = false; // force MAP_HUGETLB for small allocs
static bool EnableDefrag = true;
// Buffers that are larger than this size will not be filled with 0xcf
#ifndef DBG_FILL_MAX_SIZE
#define DBG_FILL_MAX_SIZE 0x01000000000000ULL
#endif
template <class T>
inline T* DoCas(T* volatile* target, T* exchange, T* compare) {
#if defined(__has_builtin) && __has_builtin(__sync_val_compare_and_swap)
return __sync_val_compare_and_swap(target, compare, exchange);
#elif defined(_WIN32)
#ifdef _64_
return (T*)_InterlockedCompareExchange64((__int64*)target, (__int64)exchange, (__int64)compare);
#else
//return (T*)InterlockedCompareExchangePointer(targetVoidP, exchange, compare);
return (T*)_InterlockedCompareExchange((LONG*)target, (LONG)exchange, (LONG)compare);
#endif
#elif defined(__i386) || defined(__x86_64__)
union {
T* volatile* NP;
void* volatile* VoidP;
} gccSucks;
gccSucks.NP = target;
void* volatile* targetVoidP = gccSucks.VoidP;
__asm__ __volatile__(
"lock\n\t"
"cmpxchg %2,%0\n\t"
: "+m"(*(targetVoidP)), "+a"(compare)
: "r"(exchange)
: "cc", "memory");
return compare;
#else
#error inline_cas not defined for this platform
#endif
}
#ifdef _64_
const uintptr_t N_MAX_WORKSET_SIZE = 0x100000000ll * 200;
const uintptr_t N_HUGE_AREA_FINISH = 0x700000000000ll;
#ifndef _freebsd_
const uintptr_t LINUX_MMAP_AREA_START = 0x100000000ll;
static uintptr_t volatile linuxAllocPointer = LINUX_MMAP_AREA_START;
static uintptr_t volatile linuxAllocPointerHuge = LINUX_MMAP_AREA_START + N_MAX_WORKSET_SIZE;
#endif
#else
const uintptr_t N_MAX_WORKSET_SIZE = 0xffffffff;
#endif
#define ALLOC_START ((char*)0)
const size_t N_CHUNK_SIZE = 1024 * 1024;
const size_t N_CHUNKS = N_MAX_WORKSET_SIZE / N_CHUNK_SIZE;
const size_t N_LARGE_ALLOC_SIZE = N_CHUNK_SIZE * 128;
// map size idx to size in bytes
#ifdef LFALLOC_YT
const int N_SIZES = 27;
#else
const int N_SIZES = 25;
#endif
const int nSizeIdxToSize[N_SIZES] = {
-1,
#if defined(_64_)
16, 16, 32, 32, 48, 64, 96, 128,
#else
8,
16,
24,
32,
48,
64,
96,
128,
#endif
192, 256, 384, 512, 768, 1024, 1536, 2048,
3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768,
#ifdef LFALLOC_YT
49152, 65536
#endif
};
#ifdef LFALLOC_YT
const size_t N_MAX_FAST_SIZE = 65536;
#else
const size_t N_MAX_FAST_SIZE = 32768;
#endif
const unsigned char size2idxArr1[64 + 1] = {
1,
#if defined(_64_)
2, 2, 4, 4, // 16, 16, 32, 32
#else
1, 2, 3, 4, // 8, 16, 24, 32
#endif
5, 5, 6, 6, // 48, 64
7, 7, 7, 7, 8, 8, 8, 8, // 96, 128
9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, // 192, 256
11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, // 384
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12 // 512
};
#ifdef LFALLOC_YT
const unsigned char size2idxArr2[256] = {
#else
const unsigned char size2idxArr2[128] = {
#endif
12, 12, 13, 14, // 512, 512, 768, 1024
15, 15, 16, 16, // 1536, 2048
17, 17, 17, 17, 18, 18, 18, 18, // 3072, 4096
19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, // 6144, 8192
21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, // 12288
22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, // 16384
23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, // 24576
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, // 32768
#ifdef LFALLOC_YT
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, // 49152
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, // 65536
#endif
};
// map entry number to size idx
// special size idx's: 0 = not used, -1 = mem locked, but not allocated
static volatile char chunkSizeIdx[N_CHUNKS];
const int FREE_CHUNK_ARR_BUF = 0x20000; // this is effectively 128G of free memory (with 1M chunks), should not be exhausted actually
static volatile uintptr_t freeChunkArr[FREE_CHUNK_ARR_BUF];
static volatile int freeChunkCount;
static void AddFreeChunk(uintptr_t chunkId) {
chunkSizeIdx[chunkId] = -1;
if (Y_UNLIKELY(freeChunkCount == FREE_CHUNK_ARR_BUF))
NMalloc::AbortFromCorruptedAllocator("free chunks array overflowed");
freeChunkArr[freeChunkCount++] = chunkId;
}
static bool GetFreeChunk(uintptr_t* res) {
if (freeChunkCount == 0) {
*res = 0;
return false;
}
*res = freeChunkArr[--freeChunkCount];
return true;
}
//////////////////////////////////////////////////////////////////////////
enum ELFAllocCounter {
CT_USER_ALLOC, // accumulated size requested by user code
CT_MMAP, // accumulated mmapped size
CT_MMAP_CNT, // number of mmapped regions
CT_MUNMAP, // accumulated unmmapped size
CT_MUNMAP_CNT, // number of munmaped regions
CT_SYSTEM_ALLOC, // accumulated allocated size for internal lfalloc needs
CT_SYSTEM_FREE, // accumulated deallocated size for internal lfalloc needs
CT_SMALL_ALLOC, // accumulated allocated size for fixed-size blocks
CT_SMALL_FREE, // accumulated deallocated size for fixed-size blocks
CT_LARGE_ALLOC, // accumulated allocated size for large blocks
CT_LARGE_FREE, // accumulated deallocated size for large blocks
CT_SLOW_ALLOC_CNT, // number of slow (not LF) allocations
CT_DEGRAGMENT_CNT, // number of memory defragmentations
CT_MAX
};
static Y_FORCE_INLINE void IncrementCounter(ELFAllocCounter counter, size_t value);
//////////////////////////////////////////////////////////////////////////
enum EMMapMode {
MM_NORMAL, // memory for small allocs
MM_HUGE // memory for large allocs
};
#ifndef _MSC_VER
inline void VerifyMmapResult(void* result) {
if (Y_UNLIKELY(result == MAP_FAILED))
NMalloc::AbortFromCorruptedAllocator("negative size requested? or just out of mem");
}
#endif
#if !defined(_MSC_VER) && !defined(_freebsd_) && defined(_64_)
static char* AllocWithMMapLinuxImpl(uintptr_t sz, EMMapMode mode) {
char* volatile* areaPtr;
char* areaStart;
uintptr_t areaFinish;
int mapProt = PROT_READ | PROT_WRITE;
int mapFlags = MAP_PRIVATE | MAP_ANON;
if (mode == MM_HUGE) {
areaPtr = reinterpret_cast<char* volatile*>(&linuxAllocPointerHuge);
areaStart = reinterpret_cast<char*>(LINUX_MMAP_AREA_START + N_MAX_WORKSET_SIZE);
areaFinish = N_HUGE_AREA_FINISH;
} else {
areaPtr = reinterpret_cast<char* volatile*>(&linuxAllocPointer);
areaStart = reinterpret_cast<char*>(LINUX_MMAP_AREA_START);
areaFinish = N_MAX_WORKSET_SIZE;
if (MapHugeTLB) {
mapFlags |= MAP_HUGETLB;
}
}
bool wrapped = false;
for (;;) {
char* prevAllocPtr = *areaPtr;
char* nextAllocPtr = prevAllocPtr + sz;
if (uintptr_t(nextAllocPtr - (char*)nullptr) >= areaFinish) {
if (Y_UNLIKELY(wrapped)) {
NMalloc::AbortFromCorruptedAllocator("virtual memory is over fragmented");
}
// wrap after all area is used
DoCas(areaPtr, areaStart, prevAllocPtr);
wrapped = true;
continue;
}
if (DoCas(areaPtr, nextAllocPtr, prevAllocPtr) != prevAllocPtr)
continue;
char* largeBlock = (char*)mmap(prevAllocPtr, sz, mapProt, mapFlags, -1, 0);
VerifyMmapResult(largeBlock);
if (largeBlock == prevAllocPtr)
return largeBlock;
if (largeBlock)
munmap(largeBlock, sz);
if (sz < 0x80000) {
// skip utilized area with big steps
DoCas(areaPtr, nextAllocPtr + 0x10 * 0x10000, nextAllocPtr);
}
}
}
#endif
static char* AllocWithMMap(uintptr_t sz, EMMapMode mode) {
(void)mode;
#ifdef _MSC_VER
char* largeBlock = (char*)VirtualAlloc(0, sz, MEM_RESERVE, PAGE_READWRITE);
if (Y_UNLIKELY(largeBlock == nullptr))
NMalloc::AbortFromCorruptedAllocator("out of memory");
if (Y_UNLIKELY(uintptr_t(((char*)largeBlock - ALLOC_START) + sz) >= N_MAX_WORKSET_SIZE))
NMalloc::AbortFromCorruptedAllocator("out of working set, something has broken");
#else
#if defined(_freebsd_) || !defined(_64_)
char* largeBlock = (char*)mmap(0, sz, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0);
VerifyMmapResult(largeBlock);
if (Y_UNLIKELY(uintptr_t(((char*)largeBlock - ALLOC_START) + sz) >= N_MAX_WORKSET_SIZE))
NMalloc::AbortFromCorruptedAllocator("out of working set, something has broken");
#else
char* largeBlock = AllocWithMMapLinuxImpl(sz, mode);
if (TransparentHugePages) {
madvise(largeBlock, sz, MADV_HUGEPAGE);
}
#endif
#endif
Y_ASSERT_NOBT(largeBlock);
IncrementCounter(CT_MMAP, sz);
IncrementCounter(CT_MMAP_CNT, 1);
return largeBlock;
}
enum class ELarge : ui8 {
Free = 0, // block in free cache
Alloc = 1, // block is allocated
Gone = 2, // block was unmapped
};
struct TLargeBlk {
static TLargeBlk* As(void *raw) {
return reinterpret_cast<TLargeBlk*>((char*)raw - 4096ll);
}
static const TLargeBlk* As(const void *raw) {
return reinterpret_cast<const TLargeBlk*>((const char*)raw - 4096ll);
}
void SetSize(size_t bytes, size_t pages) {
Pages = pages;
Bytes = bytes;
}
void Mark(ELarge state) {
const ui64 marks[] = {
0x8b38aa5ca4953c98, // ELarge::Free
0xf916d33584eb5087, // ELarge::Alloc
0xd33b0eca7651bc3f // ELarge::Gone
};
Token = size_t(marks[ui8(state)]);
}
size_t Pages; // Total pages allocated with mmap like call
size_t Bytes; // Actually requested bytes by user
size_t Token; // Block state token, see ELarge enum.
};
static void LargeBlockUnmap(void* p, size_t pages) {
const auto bytes = (pages + 1) * uintptr_t(4096);
IncrementCounter(CT_MUNMAP, bytes);
IncrementCounter(CT_MUNMAP_CNT, 1);
#ifdef _MSC_VER
Y_ASSERT_NOBT(0);
#else
TLargeBlk::As(p)->Mark(ELarge::Gone);
munmap((char*)p - 4096ll, bytes);
#endif
}
//////////////////////////////////////////////////////////////////////////
const size_t LB_BUF_SIZE = 250;
const size_t LB_BUF_HASH = 977;
static int LB_LIMIT_TOTAL_SIZE = 500 * 1024 * 1024 / 4096; // do not keep more then this mem total in lbFreePtrs[]
static void* volatile lbFreePtrs[LB_BUF_HASH][LB_BUF_SIZE];
static TAtomic lbFreePageCount;
static void* LargeBlockAlloc(size_t _nSize, ELFAllocCounter counter) {
size_t pgCount = (_nSize + 4095) / 4096;
#ifdef _MSC_VER
char* pRes = (char*)VirtualAlloc(0, (pgCount + 1) * 4096ll, MEM_COMMIT, PAGE_READWRITE);
if (Y_UNLIKELY(pRes == 0)) {
NMalloc::AbortFromCorruptedAllocator("out of memory");
}
#else
IncrementCounter(counter, pgCount * 4096ll);
IncrementCounter(CT_SYSTEM_ALLOC, 4096ll);
int lbHash = pgCount % LB_BUF_HASH;
for (int i = 0; i < LB_BUF_SIZE; ++i) {
void* p = lbFreePtrs[lbHash][i];
if (p == nullptr)
continue;
if (DoCas(&lbFreePtrs[lbHash][i], (void*)nullptr, p) == p) {
size_t realPageCount = TLargeBlk::As(p)->Pages;
if (realPageCount == pgCount) {
AtomicAdd(lbFreePageCount, -pgCount);
TLargeBlk::As(p)->Mark(ELarge::Alloc);
return p;
} else {
if (DoCas(&lbFreePtrs[lbHash][i], p, (void*)nullptr) != (void*)nullptr) {
// block was freed while we were busy
AtomicAdd(lbFreePageCount, -realPageCount);
LargeBlockUnmap(p, realPageCount);
--i;
}
}
}
}
char* pRes = AllocWithMMap((pgCount + 1) * 4096ll, MM_HUGE);
#endif
pRes += 4096ll;
TLargeBlk::As(pRes)->SetSize(_nSize, pgCount);
TLargeBlk::As(pRes)->Mark(ELarge::Alloc);
return pRes;
}
#ifndef _MSC_VER
static void FreeAllLargeBlockMem() {
for (auto& lbFreePtr : lbFreePtrs) {
for (int i = 0; i < LB_BUF_SIZE; ++i) {
void* p = lbFreePtr[i];
if (p == nullptr)
continue;
if (DoCas(&lbFreePtr[i], (void*)nullptr, p) == p) {
int pgCount = TLargeBlk::As(p)->Pages;
AtomicAdd(lbFreePageCount, -pgCount);
LargeBlockUnmap(p, pgCount);
}
}
}
}
#endif
static void LargeBlockFree(void* p, ELFAllocCounter counter) {
if (p == nullptr)
return;
#ifdef _MSC_VER
VirtualFree((char*)p - 4096ll, 0, MEM_RELEASE);
#else
size_t pgCount = TLargeBlk::As(p)->Pages;
TLargeBlk::As(p)->Mark(ELarge::Free);
IncrementCounter(counter, pgCount * 4096ll);
IncrementCounter(CT_SYSTEM_FREE, 4096ll);
if (lbFreePageCount > LB_LIMIT_TOTAL_SIZE)
FreeAllLargeBlockMem();
int lbHash = pgCount % LB_BUF_HASH;
for (int i = 0; i < LB_BUF_SIZE; ++i) {
if (lbFreePtrs[lbHash][i] == nullptr) {
if (DoCas(&lbFreePtrs[lbHash][i], p, (void*)nullptr) == nullptr) {
AtomicAdd(lbFreePageCount, pgCount);
return;
}
}
}
LargeBlockUnmap(p, pgCount);
#endif
}
static void* SystemAlloc(size_t _nSize) {
//HeapAlloc(GetProcessHeap(), HEAP_GENERATE_EXCEPTIONS, _nSize);
return LargeBlockAlloc(_nSize, CT_SYSTEM_ALLOC);
}
static void SystemFree(void* p) {
//HeapFree(GetProcessHeap(), 0, p);
LargeBlockFree(p, CT_SYSTEM_FREE);
}
//////////////////////////////////////////////////////////////////////////
char* const LF_LOCK_FREE = ((char*)0) + 0;
char* const LF_LOCK_LOCKED = ((char*)0) + 1;
char* const LF_LOCK_FUTEX_WAIT = ((char*)0) + 2;
static bool LFHasFutex = true;
static bool LFCheckedWinVersion = false;
// TLFLockData has to be zero-initialized explicitly https://en.cppreference.com/w/cpp/language/zero_initialization
// otherwise constructor TLFLockData() for global var might be called after first use
struct TLFLockData
{
char* Pad1[15];
char* volatile LockVar; // = LF_LOCK_FREE; // no constructor, zero-initialize manually
char* Pad2[15];
bool TryLock()
{
return (LockVar == LF_LOCK_FREE && DoCas(&LockVar, LF_LOCK_LOCKED, LF_LOCK_FREE) == LF_LOCK_FREE);
}
void FutexWait()
{
#ifdef _win_
if (!LFCheckedWinVersion) {
OSVERSIONINFOA ver;
memset(&ver, 0, sizeof(ver));
ver.dwOSVersionInfoSize = sizeof(OSVERSIONINFOA);
GetVersionExA(&ver);
LFHasFutex = (ver.dwMajorVersion > 6) || (ver.dwMajorVersion == 6 && ver.dwMinorVersion >= 2);
LFCheckedWinVersion = true;
}
if (LFHasFutex) {
if (LockVar == LF_LOCK_LOCKED) {
DoCas(&LockVar, LF_LOCK_FUTEX_WAIT, LF_LOCK_LOCKED);
}
if (LockVar == LF_LOCK_FUTEX_WAIT) {
char* lockedValue = LF_LOCK_FUTEX_WAIT;
WaitOnAddress(&LockVar, &lockedValue, sizeof(LockVar), INFINITE);
}
} else {
SwitchToThread();
}
#elif defined(_linux_)
if (LFHasFutex) {
if (LockVar == LF_LOCK_LOCKED) {
DoCas(&LockVar, LF_LOCK_FUTEX_WAIT, LF_LOCK_LOCKED);
}
if (LockVar == LF_LOCK_FUTEX_WAIT) {
// linux allow only int variables checks, here we pretend low bits of LockVar are int
syscall(SYS_futex, &LockVar, FUTEX_WAIT_PRIVATE, *(int*)&LF_LOCK_FUTEX_WAIT, 0, 0, 0);
}
} else {
sched_yield();
}
#else
sched_yield();
#endif
}
void Unlock()
{
Y_ASSERT_NOBT(LockVar != LF_LOCK_FREE);
if (DoCas(&LockVar, LF_LOCK_FREE, LF_LOCK_LOCKED) != LF_LOCK_LOCKED) {
Y_ASSERT_NOBT(LockVar == LF_LOCK_FUTEX_WAIT && LFHasFutex);
LockVar = LF_LOCK_FREE;
#ifdef _win_
WakeByAddressAll((PVOID)&LockVar);
#elif defined(_linux_)
syscall(SYS_futex, &LockVar, FUTEX_WAKE_PRIVATE, INT_MAX, 0, 0, 0);
#endif
}
}
};
static TLFLockData LFGlobalLock;
class TLFLockHolder {
TLFLockData *LockData = nullptr;
int Attempt = 0;
int SleepMask = 0x7f;
public:
TLFLockHolder() {}
TLFLockHolder(TLFLockData *lk) {
while (!TryLock(lk));
}
bool TryLock(TLFLockData *lk)
{
Y_ASSERT_NOBT(LockData == nullptr);
if (lk->TryLock()) {
LockData = lk;
return true;
}
if ((++Attempt & SleepMask) == 0) {
lk->FutexWait();
SleepMask = (SleepMask * 2 + 1) & 0x7fff;
} else {
#ifdef _MSC_VER
_mm_pause();
#elif defined(__i386) || defined(__x86_64__)
__asm__ __volatile__("pause");
#endif
}
return false;
}
~TLFLockHolder() {
if (LockData) {
LockData->Unlock();
}
}
};
//////////////////////////////////////////////////////////////////////////
class TLFAllocFreeList {
struct TNode {
TNode* Next;
};
TNode* volatile Head;
TNode* volatile Pending;
TAtomic PendingToFreeListCounter;
TAtomic AllocCount;
void* Padding;
static Y_FORCE_INLINE void Enqueue(TNode* volatile* headPtr, TNode* n) {
for (;;) {
TNode* volatile prevHead = *headPtr;
n->Next = prevHead;
if (DoCas(headPtr, n, prevHead) == prevHead)
break;
}
}
Y_FORCE_INLINE void* DoAlloc() {
TNode* res;
for (res = Head; res; res = Head) {
TNode* keepNext = res->Next;
if (DoCas(&Head, keepNext, res) == res) {
//Y_VERIFY(keepNext == res->Next);
break;
}
}
return res;
}
void FreeList(TNode* fl) {
if (!fl)
return;
TNode* flTail = fl;
while (flTail->Next)
flTail = flTail->Next;
for (;;) {
TNode* volatile prevHead = Head;
flTail->Next = prevHead;
if (DoCas(&Head, fl, prevHead) == prevHead)
break;
}
}
public:
Y_FORCE_INLINE void Free(void* ptr) {
TNode* newFree = (TNode*)ptr;
if (AtomicAdd(AllocCount, 0) == 0)
Enqueue(&Head, newFree);
else
Enqueue(&Pending, newFree);
}
Y_FORCE_INLINE void* Alloc() {
TAtomic keepCounter = AtomicAdd(PendingToFreeListCounter, 0);
TNode* fl = Pending;
if (AtomicAdd(AllocCount, 1) == 1) {
// No other allocs in progress.
// If (keepCounter == PendingToFreeListCounter) then Pending was not freed by other threads.
// Hence Pending is not used in any concurrent DoAlloc() atm and can be safely moved to FreeList
if (fl && keepCounter == AtomicAdd(PendingToFreeListCounter, 0) && DoCas(&Pending, (TNode*)nullptr, fl) == fl) {
// pick first element from Pending and return it
void* res = fl;
fl = fl->Next;
// if there are other elements in Pending list, add them to main free list
FreeList(fl);
AtomicAdd(PendingToFreeListCounter, 1);
AtomicAdd(AllocCount, -1);
return res;
}
}
void* res = DoAlloc();
AtomicAdd(AllocCount, -1);
return res;
}
void* GetWholeList() {
TNode* res;
for (res = Head; res; res = Head) {
if (DoCas(&Head, (TNode*)nullptr, res) == res)
break;
}
return res;
}
void ReturnWholeList(void* ptr) {
while (AtomicAdd(AllocCount, 0) != 0) // theoretically can run into problems with parallel DoAlloc()
; //ThreadYield();
for (;;) {
TNode* prevHead = Head;
if (DoCas(&Head, (TNode*)ptr, prevHead) == prevHead) {
FreeList(prevHead);
break;
}
}
}
};
/////////////////////////////////////////////////////////////////////////
static TLFAllocFreeList globalFreeLists[N_SIZES];
static char* volatile globalCurrentPtr[N_SIZES];
static TLFAllocFreeList blockFreeList;
// globalFreeLists[] contains TFreeListGroup, each of them points up to 15 free blocks
const int FL_GROUP_SIZE = 15;
struct TFreeListGroup {
TFreeListGroup* Next;
char* Ptrs[FL_GROUP_SIZE];
};
#ifdef _64_
const int FREE_LIST_GROUP_SIZEIDX = 8;
#else
const int FREE_LIST_GROUP_SIZEIDX = 6;
#endif
//////////////////////////////////////////////////////////////////////////
// find free chunks and reset chunk size so they can be reused by different sized allocations
// do not look at blockFreeList (TFreeListGroup has same size for any allocations)
static bool DefragmentMem() {
if (!EnableDefrag) {
return false;
}
IncrementCounter(CT_DEGRAGMENT_CNT, 1);
int* nFreeCount = (int*)SystemAlloc(N_CHUNKS * sizeof(int));
if (Y_UNLIKELY(!nFreeCount)) {
//__debugbreak();
NMalloc::AbortFromCorruptedAllocator("debugbreak");
}
memset(nFreeCount, 0, N_CHUNKS * sizeof(int));
TFreeListGroup* wholeLists[N_SIZES];
for (int nSizeIdx = 0; nSizeIdx < N_SIZES; ++nSizeIdx) {
wholeLists[nSizeIdx] = (TFreeListGroup*)globalFreeLists[nSizeIdx].GetWholeList();
for (TFreeListGroup* g = wholeLists[nSizeIdx]; g; g = g->Next) {
for (auto pData : g->Ptrs) {
if (pData) {
uintptr_t nChunk = (pData - ALLOC_START) / N_CHUNK_SIZE;
++nFreeCount[nChunk];
Y_ASSERT_NOBT(chunkSizeIdx[nChunk] == nSizeIdx);
}
}
}
}
bool bRes = false;
for (size_t nChunk = 0; nChunk < N_CHUNKS; ++nChunk) {
int fc = nFreeCount[nChunk];
nFreeCount[nChunk] = 0;
if (chunkSizeIdx[nChunk] <= 0)
continue;
int nEntries = N_CHUNK_SIZE / nSizeIdxToSize[static_cast<int>(chunkSizeIdx[nChunk])];
Y_ASSERT_NOBT(fc <= nEntries); // can not have more free blocks then total count
if (fc == nEntries) {
bRes = true;
nFreeCount[nChunk] = 1;
}
}
if (bRes) {
for (auto& wholeList : wholeLists) {
TFreeListGroup** ppPtr = &wholeList;
while (*ppPtr) {
TFreeListGroup* g = *ppPtr;
int dst = 0;
for (auto pData : g->Ptrs) {
if (pData) {
uintptr_t nChunk = (pData - ALLOC_START) / N_CHUNK_SIZE;
if (nFreeCount[nChunk] == 0)
g->Ptrs[dst++] = pData; // block is not freed, keep pointer
}
}
if (dst == 0) {
// no valid pointers in group, free it
*ppPtr = g->Next;
blockFreeList.Free(g);
} else {
// reset invalid pointers to 0
for (int i = dst; i < FL_GROUP_SIZE; ++i)
g->Ptrs[i] = nullptr;
ppPtr = &g->Next;
}
}
}
for (uintptr_t nChunk = 0; nChunk < N_CHUNKS; ++nChunk) {
if (!nFreeCount[nChunk])
continue;
char* pStart = ALLOC_START + nChunk * N_CHUNK_SIZE;
#ifdef _win_
VirtualFree(pStart, N_CHUNK_SIZE, MEM_DECOMMIT);
#elif defined(_freebsd_)
madvise(pStart, N_CHUNK_SIZE, MADV_FREE);
#else
madvise(pStart, N_CHUNK_SIZE, MADV_DONTNEED);
#endif
AddFreeChunk(nChunk);
}
}
for (int nSizeIdx = 0; nSizeIdx < N_SIZES; ++nSizeIdx)
globalFreeLists[nSizeIdx].ReturnWholeList(wholeLists[nSizeIdx]);
SystemFree(nFreeCount);
return bRes;
}
static Y_FORCE_INLINE void* LFAllocFromCurrentChunk(int nSizeIdx, int blockSize, int count) {
char* volatile* pFreeArray = &globalCurrentPtr[nSizeIdx];
while (char* newBlock = *pFreeArray) {
char* nextFree = newBlock + blockSize * count;
// check if there is space in chunk
char* globalEndPtr = ALLOC_START + ((newBlock - ALLOC_START) & ~((uintptr_t)N_CHUNK_SIZE - 1)) + N_CHUNK_SIZE;
if (nextFree >= globalEndPtr) {
if (nextFree > globalEndPtr)
break;
nextFree = nullptr; // it was last block in chunk
}
if (DoCas(pFreeArray, nextFree, newBlock) == newBlock)
return newBlock;
}
return nullptr;
}
enum EDefrag {
MEM_DEFRAG,
NO_MEM_DEFRAG,
};
static void* SlowLFAlloc(int nSizeIdx, int blockSize, EDefrag defrag) {
IncrementCounter(CT_SLOW_ALLOC_CNT, 1);
TLFLockHolder ls;
for (;;) {
bool locked = ls.TryLock(&LFGlobalLock);
void* res = LFAllocFromCurrentChunk(nSizeIdx, blockSize, 1);
if (res) {
return res; // might happen when other thread allocated new current chunk
}
if (locked) {
break;
}
}
for (;;) {
uintptr_t nChunk;
if (GetFreeChunk(&nChunk)) {
char* newPlace = ALLOC_START + nChunk * N_CHUNK_SIZE;
#ifdef _MSC_VER
void* pTest = VirtualAlloc(newPlace, N_CHUNK_SIZE, MEM_COMMIT, PAGE_READWRITE);
Y_ASSERT_NOBT(pTest == newPlace);
#endif
chunkSizeIdx[nChunk] = (char)nSizeIdx;
globalCurrentPtr[nSizeIdx] = newPlace + blockSize;
return newPlace;
}
// out of luck, try to defrag
if (defrag == MEM_DEFRAG && DefragmentMem()) {
continue;
}
char* largeBlock = AllocWithMMap(N_LARGE_ALLOC_SIZE, MM_NORMAL);
uintptr_t addr = ((largeBlock - ALLOC_START) + N_CHUNK_SIZE - 1) & (~(N_CHUNK_SIZE - 1));
uintptr_t endAddr = ((largeBlock - ALLOC_START) + N_LARGE_ALLOC_SIZE) & (~(N_CHUNK_SIZE - 1));
for (uintptr_t p = addr; p < endAddr; p += N_CHUNK_SIZE) {
uintptr_t chunk = p / N_CHUNK_SIZE;
Y_ASSERT_NOBT(chunk * N_CHUNK_SIZE == p);
Y_ASSERT_NOBT(chunkSizeIdx[chunk] == 0);
AddFreeChunk(chunk);
}
}
return nullptr;
}
// allocate single block
static Y_FORCE_INLINE void* LFAllocNoCache(int nSizeIdx, EDefrag defrag) {
int blockSize = nSizeIdxToSize[nSizeIdx];
void* res = LFAllocFromCurrentChunk(nSizeIdx, blockSize, 1);
if (res)
return res;
return SlowLFAlloc(nSizeIdx, blockSize, defrag);
}
// allocate multiple blocks, returns number of blocks allocated (max FL_GROUP_SIZE)
// buf should have space for at least FL_GROUP_SIZE elems
static Y_FORCE_INLINE int LFAllocNoCacheMultiple(int nSizeIdx, char** buf) {
int blockSize = nSizeIdxToSize[nSizeIdx];
void* res = LFAllocFromCurrentChunk(nSizeIdx, blockSize, FL_GROUP_SIZE);
if (res) {
char* resPtr = (char*)res;
for (int k = 0; k < FL_GROUP_SIZE; ++k) {
buf[k] = resPtr;
resPtr += blockSize;
}
return FL_GROUP_SIZE;
}
buf[0] = (char*)SlowLFAlloc(nSizeIdx, blockSize, MEM_DEFRAG);
return 1;
}
// take several blocks from global free list (max FL_GROUP_SIZE blocks), returns number of blocks taken
// buf should have space for at least FL_GROUP_SIZE elems
static Y_FORCE_INLINE int TakeBlocksFromGlobalFreeList(int nSizeIdx, char** buf) {
TLFAllocFreeList& fl = globalFreeLists[nSizeIdx];
TFreeListGroup* g = (TFreeListGroup*)fl.Alloc();
if (g) {
int resCount = 0;
for (auto& ptr : g->Ptrs) {
if (ptr)
buf[resCount++] = ptr;
else
break;
}
blockFreeList.Free(g);
return resCount;
}
return 0;
}
// add several blocks to global free list
static Y_FORCE_INLINE void PutBlocksToGlobalFreeList(ptrdiff_t nSizeIdx, char** buf, int count) {
for (int startIdx = 0; startIdx < count;) {
TFreeListGroup* g = (TFreeListGroup*)blockFreeList.Alloc();
Y_ASSERT_NOBT(sizeof(TFreeListGroup) == nSizeIdxToSize[FREE_LIST_GROUP_SIZEIDX]);
if (!g) {
g = (TFreeListGroup*)LFAllocNoCache(FREE_LIST_GROUP_SIZEIDX, NO_MEM_DEFRAG);
}
int groupSize = count - startIdx;
if (groupSize > FL_GROUP_SIZE)
groupSize = FL_GROUP_SIZE;
for (int i = 0; i < groupSize; ++i)
g->Ptrs[i] = buf[startIdx + i];
for (int i = groupSize; i < FL_GROUP_SIZE; ++i)
g->Ptrs[i] = nullptr;
// add free group to the global list
TLFAllocFreeList& fl = globalFreeLists[nSizeIdx];
fl.Free(g);
startIdx += groupSize;
}
}
//////////////////////////////////////////////////////////////////////////
static TAtomic GlobalCounters[CT_MAX];
const int MAX_LOCAL_UPDATES = 100;
const intptr_t MAX_LOCAL_DELTA = 1*1024*1024;
struct TLocalCounter {
intptr_t Value;
int Updates;
TAtomic* Parent;
Y_FORCE_INLINE void Init(TAtomic* parent) {
Parent = parent;
Value = 0;
Updates = 0;
}
Y_FORCE_INLINE void Increment(size_t value) {
Value += value;
if (++Updates > MAX_LOCAL_UPDATES || Value > MAX_LOCAL_DELTA) {
Flush();
}
}
Y_FORCE_INLINE void Flush() {
AtomicAdd(*Parent, Value);
Value = 0;
Updates = 0;
}
};
////////////////////////////////////////////////////////////////////////////////
// DBG stuff
////////////////////////////////////////////////////////////////////////////////
#if defined(LFALLOC_DBG)
struct TPerTagAllocCounter {
TAtomic Size;
TAtomic Count;
Y_FORCE_INLINE void Alloc(size_t size) {
AtomicAdd(Size, size);
AtomicAdd(Count, 1);
}
Y_FORCE_INLINE void Free(size_t size) {
AtomicSub(Size, size);
AtomicSub(Count, 1);
}
};
struct TLocalPerTagAllocCounter {
intptr_t Size;
int Count;
int Updates;
Y_FORCE_INLINE void Init() {
Size = 0;
Count = 0;
Updates = 0;
}
Y_FORCE_INLINE void Alloc(TPerTagAllocCounter& parent, size_t size) {
Size += size;
++Count;
if (++Updates > MAX_LOCAL_UPDATES) {
Flush(parent);
}
}
Y_FORCE_INLINE void Free(TPerTagAllocCounter& parent, size_t size) {
Size -= size;
--Count;
if (++Updates > MAX_LOCAL_UPDATES) {
Flush(parent);
}
}
Y_FORCE_INLINE void Flush(TPerTagAllocCounter& parent) {
AtomicAdd(parent.Size, Size);
Size = 0;
AtomicAdd(parent.Count, Count);
Count = 0;
Updates = 0;
}
};
static const int DBG_ALLOC_MAX_TAG = 1000;
static const int DBG_ALLOC_ALIGNED_TAG = 0xF0000000;
static const int DBG_ALLOC_NUM_SIZES = 30;
static TPerTagAllocCounter GlobalPerTagAllocCounters[DBG_ALLOC_MAX_TAG][DBG_ALLOC_NUM_SIZES];
#endif // LFALLOC_DBG
//////////////////////////////////////////////////////////////////////////
const int THREAD_BUF = 256;
static int borderSizes[N_SIZES];
const int MAX_MEM_PER_SIZE_PER_THREAD = 512 * 1024;
struct TThreadAllocInfo {
// FreePtrs - pointers to first free blocks in per thread block list
// LastFreePtrs - pointers to last blocks in lists, may be invalid if FreePtr is zero
char* FreePtrs[N_SIZES][THREAD_BUF];
int FreePtrIndex[N_SIZES];
TThreadAllocInfo* pNextInfo;
TLocalCounter LocalCounters[CT_MAX];
#if defined(LFALLOC_DBG)
TLocalPerTagAllocCounter LocalPerTagAllocCounters[DBG_ALLOC_MAX_TAG][DBG_ALLOC_NUM_SIZES];
#endif
#ifdef _win_
HANDLE hThread;
#endif
void Init(TThreadAllocInfo** pHead) {
memset(this, 0, sizeof(*this));
for (auto& i : FreePtrIndex)
i = THREAD_BUF;
#ifdef _win_
BOOL b = DuplicateHandle(
GetCurrentProcess(), GetCurrentThread(),
GetCurrentProcess(), &hThread,
0, FALSE, DUPLICATE_SAME_ACCESS);
Y_ASSERT_NOBT(b);
#endif
pNextInfo = *pHead;
*pHead = this;
for (int k = 0; k < N_SIZES; ++k) {
int maxCount = MAX_MEM_PER_SIZE_PER_THREAD / nSizeIdxToSize[k];
if (maxCount > THREAD_BUF)
maxCount = THREAD_BUF;
borderSizes[k] = THREAD_BUF - maxCount;
}
for (int i = 0; i < CT_MAX; ++i) {
LocalCounters[i].Init(&GlobalCounters[i]);
}
#if defined(LFALLOC_DBG)
for (int tag = 0; tag < DBG_ALLOC_MAX_TAG; ++tag) {
for (int sizeIdx = 0; sizeIdx < DBG_ALLOC_NUM_SIZES; ++sizeIdx) {
auto& local = LocalPerTagAllocCounters[tag][sizeIdx];
local.Init();
}
}
#endif
}
void Done() {
for (auto sizeIdx : FreePtrIndex) {
Y_ASSERT_NOBT(sizeIdx == THREAD_BUF);
}
for (auto& localCounter : LocalCounters) {
localCounter.Flush();
}
#if defined(LFALLOC_DBG)
for (int tag = 0; tag < DBG_ALLOC_MAX_TAG; ++tag) {
for (int sizeIdx = 0; sizeIdx < DBG_ALLOC_NUM_SIZES; ++sizeIdx) {
auto& local = LocalPerTagAllocCounters[tag][sizeIdx];
auto& global = GlobalPerTagAllocCounters[tag][sizeIdx];
local.Flush(global);
}
}
#endif
#ifdef _win_
if (hThread)
CloseHandle(hThread);
#endif
}
};
PERTHREAD TThreadAllocInfo* pThreadInfo;
static TThreadAllocInfo* pThreadInfoList;
static TLFLockData LFLockThreadInfo;
static Y_FORCE_INLINE void IncrementCounter(ELFAllocCounter counter, size_t value) {
#ifdef LFALLOC_YT
TThreadAllocInfo* thr = pThreadInfo;
if (thr) {
thr->LocalCounters[counter].Increment(value);
} else {
AtomicAdd(GlobalCounters[counter], value);
}
#endif
}
extern "C" i64 GetLFAllocCounterFast(int counter) {
#ifdef LFALLOC_YT
return GlobalCounters[counter];
#else
return 0;
#endif
}
extern "C" i64 GetLFAllocCounterFull(int counter) {
#ifdef LFALLOC_YT
i64 ret = GlobalCounters[counter];
{
TLFLockHolder ll(&LFLockThreadInfo);
for (TThreadAllocInfo** p = &pThreadInfoList; *p;) {
TThreadAllocInfo* pInfo = *p;
ret += pInfo->LocalCounters[counter].Value;
p = &pInfo->pNextInfo;
}
}
return ret;
#else
return 0;
#endif
}
static void MoveSingleThreadFreeToGlobal(TThreadAllocInfo* pInfo) {
for (int sizeIdx = 0; sizeIdx < N_SIZES; ++sizeIdx) {
int& freePtrIdx = pInfo->FreePtrIndex[sizeIdx];
char** freePtrs = pInfo->FreePtrs[sizeIdx];
PutBlocksToGlobalFreeList(sizeIdx, freePtrs + freePtrIdx, THREAD_BUF - freePtrIdx);
freePtrIdx = THREAD_BUF;
}
}
#ifdef _win_
static bool IsDeadThread(TThreadAllocInfo* pInfo) {
DWORD dwExit;
bool isDead = !GetExitCodeThread(pInfo->hThread, &dwExit) || dwExit != STILL_ACTIVE;
return isDead;
}
static void CleanupAfterDeadThreads() {
TLFLockHolder ll(&LFLockThreadInfo);
for (TThreadAllocInfo** p = &pThreadInfoList; *p;) {
TThreadAllocInfo* pInfo = *p;
if (IsDeadThread(pInfo)) {
MoveSingleThreadFreeToGlobal(pInfo);
pInfo->Done();
*p = pInfo->pNextInfo;
SystemFree(pInfo);
} else
p = &pInfo->pNextInfo;
}
}
#endif
#ifndef _win_
static pthread_key_t ThreadCacheCleaner;
static void* volatile ThreadCacheCleanerStarted; // 0 = not started, -1 = started, -2 = is starting
static PERTHREAD bool IsStoppingThread;
static void FreeThreadCache(void*) {
TThreadAllocInfo* pToDelete = nullptr;
{
TLFLockHolder ll(&LFLockThreadInfo);
pToDelete = pThreadInfo;
if (pToDelete == nullptr)
return;
// remove from the list
for (TThreadAllocInfo** p = &pThreadInfoList; *p; p = &(*p)->pNextInfo) {
if (*p == pToDelete) {
*p = pToDelete->pNextInfo;
break;
}
}
IsStoppingThread = true;
pThreadInfo = nullptr;
}
// free per thread buf
MoveSingleThreadFreeToGlobal(pToDelete);
pToDelete->Done();
SystemFree(pToDelete);
}
#endif
static void AllocThreadInfo() {
#ifndef _win_
if (DoCas(&ThreadCacheCleanerStarted, (void*)-2, (void*)nullptr) == (void*)nullptr) {
pthread_key_create(&ThreadCacheCleaner, FreeThreadCache);
ThreadCacheCleanerStarted = (void*)-1;
}
if (ThreadCacheCleanerStarted != (void*)-1)
return; // do not use ThreadCacheCleaner until it is constructed
{
if (IsStoppingThread)
return;
TLFLockHolder ll(&LFLockThreadInfo);
if (IsStoppingThread) // better safe than sorry
return;
pThreadInfo = (TThreadAllocInfo*)SystemAlloc(sizeof(TThreadAllocInfo));
pThreadInfo->Init(&pThreadInfoList);
}
pthread_setspecific(ThreadCacheCleaner, (void*)-1); // without value destructor will not be called
#else
CleanupAfterDeadThreads();
{
pThreadInfo = (TThreadAllocInfo*)SystemAlloc(sizeof(TThreadAllocInfo));
TLFLockHolder ll(&LFLockThreadInfo);
pThreadInfo->Init(&pThreadInfoList);
}
#endif
}
//////////////////////////////////////////////////////////////////////////
// DBG stuff
//////////////////////////////////////////////////////////////////////////
#if defined(LFALLOC_DBG)
struct TAllocHeader {
uint64_t Size;
int Tag;
int Cookie;
};
// should be power of 2
static_assert(sizeof(TAllocHeader) == 16);
static inline void* GetAllocPtr(TAllocHeader* p) {
return p + 1;
}
static inline TAllocHeader* GetAllocHeader(void* p) {
auto* header = ((TAllocHeader*)p) - 1;
if (header->Tag == DBG_ALLOC_ALIGNED_TAG) {
return (TAllocHeader*)header->Size;
}
return header;
}
PERTHREAD int AllocationTag;
extern "C" int SetThreadAllocTag(int tag) {
int prevTag = AllocationTag;
if (tag < DBG_ALLOC_MAX_TAG && tag >= 0) {
AllocationTag = tag;
}
return prevTag;
}
PERTHREAD bool ProfileCurrentThread;
extern "C" bool SetProfileCurrentThread(bool newVal) {
bool prevVal = ProfileCurrentThread;
ProfileCurrentThread = newVal;
return prevVal;
}
static volatile bool ProfileAllThreads;
extern "C" bool SetProfileAllThreads(bool newVal) {
bool prevVal = ProfileAllThreads;
ProfileAllThreads = newVal;
return prevVal;
}
static volatile bool AllocationSamplingEnabled;
extern "C" bool SetAllocationSamplingEnabled(bool newVal) {
bool prevVal = AllocationSamplingEnabled;
AllocationSamplingEnabled = newVal;
return prevVal;
}
static size_t AllocationSampleRate = 1000;
extern "C" size_t SetAllocationSampleRate(size_t newVal) {
size_t prevVal = AllocationSampleRate;
AllocationSampleRate = newVal;
return prevVal;
}
static size_t AllocationSampleMaxSize = N_MAX_FAST_SIZE;
extern "C" size_t SetAllocationSampleMaxSize(size_t newVal) {
size_t prevVal = AllocationSampleMaxSize;
AllocationSampleMaxSize = newVal;
return prevVal;
}
using TAllocationCallback = int(int tag, size_t size, int sizeIdx);
static TAllocationCallback* AllocationCallback;
extern "C" TAllocationCallback* SetAllocationCallback(TAllocationCallback* newVal) {
TAllocationCallback* prevVal = AllocationCallback;
AllocationCallback = newVal;
return prevVal;
}
using TDeallocationCallback = void(int cookie, int tag, size_t size, int sizeIdx);
static TDeallocationCallback* DeallocationCallback;
extern "C" TDeallocationCallback* SetDeallocationCallback(TDeallocationCallback* newVal) {
TDeallocationCallback* prevVal = DeallocationCallback;
DeallocationCallback = newVal;
return prevVal;
}
PERTHREAD TAtomic AllocationsCount;
PERTHREAD bool InAllocationCallback;
static const int DBG_ALLOC_INVALID_COOKIE = -1;
static inline int SampleAllocation(TAllocHeader* p, int sizeIdx) {
int cookie = DBG_ALLOC_INVALID_COOKIE;
if (AllocationSamplingEnabled && (ProfileCurrentThread || ProfileAllThreads) && !InAllocationCallback) {
if (p->Size > AllocationSampleMaxSize || ++AllocationsCount % AllocationSampleRate == 0) {
if (AllocationCallback) {
InAllocationCallback = true;
cookie = AllocationCallback(p->Tag, p->Size, sizeIdx);
InAllocationCallback = false;
}
}
}
return cookie;
}
static inline void SampleDeallocation(TAllocHeader* p, int sizeIdx) {
if (p->Cookie != DBG_ALLOC_INVALID_COOKIE && !InAllocationCallback) {
if (DeallocationCallback) {
InAllocationCallback = true;
DeallocationCallback(p->Cookie, p->Tag, p->Size, sizeIdx);
InAllocationCallback = false;
}
}
}
static inline void TrackPerTagAllocation(TAllocHeader* p, int sizeIdx) {
if (p->Tag < DBG_ALLOC_MAX_TAG && p->Tag >= 0) {
Y_ASSERT_NOBT(sizeIdx < DBG_ALLOC_NUM_SIZES);
auto& global = GlobalPerTagAllocCounters[p->Tag][sizeIdx];
TThreadAllocInfo* thr = pThreadInfo;
if (thr) {
auto& local = thr->LocalPerTagAllocCounters[p->Tag][sizeIdx];
local.Alloc(global, p->Size);
} else {
global.Alloc(p->Size);
}
}
}
static inline void TrackPerTagDeallocation(TAllocHeader* p, int sizeIdx) {
if (p->Tag < DBG_ALLOC_MAX_TAG && p->Tag >= 0) {
Y_ASSERT_NOBT(sizeIdx < DBG_ALLOC_NUM_SIZES);
auto& global = GlobalPerTagAllocCounters[p->Tag][sizeIdx];
TThreadAllocInfo* thr = pThreadInfo;
if (thr) {
auto& local = thr->LocalPerTagAllocCounters[p->Tag][sizeIdx];
local.Free(global, p->Size);
} else {
global.Free(p->Size);
}
}
}
static void* TrackAllocation(void* ptr, size_t size, int sizeIdx) {
TAllocHeader* p = (TAllocHeader*)ptr;
p->Size = size;
p->Tag = AllocationTag;
p->Cookie = SampleAllocation(p, sizeIdx);
TrackPerTagAllocation(p, sizeIdx);
return GetAllocPtr(p);
}
static void TrackDeallocation(void* ptr, int sizeIdx) {
TAllocHeader* p = (TAllocHeader*)ptr;
SampleDeallocation(p, sizeIdx);
TrackPerTagDeallocation(p, sizeIdx);
}
struct TPerTagAllocInfo {
ssize_t Count;
ssize_t Size;
};
extern "C" void GetPerTagAllocInfo(
bool flushPerThreadCounters,
TPerTagAllocInfo* info,
int& maxTag,
int& numSizes) {
maxTag = DBG_ALLOC_MAX_TAG;
numSizes = DBG_ALLOC_NUM_SIZES;
if (info) {
if (flushPerThreadCounters) {
TLFLockHolder ll(&LFLockThreadInfo);
for (TThreadAllocInfo** p = &pThreadInfoList; *p;) {
TThreadAllocInfo* pInfo = *p;
for (int tag = 0; tag < DBG_ALLOC_MAX_TAG; ++tag) {
for (int sizeIdx = 0; sizeIdx < DBG_ALLOC_NUM_SIZES; ++sizeIdx) {
auto& local = pInfo->LocalPerTagAllocCounters[tag][sizeIdx];
auto& global = GlobalPerTagAllocCounters[tag][sizeIdx];
local.Flush(global);
}
}
p = &pInfo->pNextInfo;
}
}
for (int tag = 0; tag < DBG_ALLOC_MAX_TAG; ++tag) {
for (int sizeIdx = 0; sizeIdx < DBG_ALLOC_NUM_SIZES; ++sizeIdx) {
auto& global = GlobalPerTagAllocCounters[tag][sizeIdx];
auto& res = info[tag * DBG_ALLOC_NUM_SIZES + sizeIdx];
res.Count = global.Count;
res.Size = global.Size;
}
}
}
}
#endif // LFALLOC_DBG
//////////////////////////////////////////////////////////////////////////
static Y_FORCE_INLINE void* LFAllocImpl(size_t _nSize) {
#if defined(LFALLOC_DBG)
size_t size = _nSize;
_nSize += sizeof(TAllocHeader);
#endif
IncrementCounter(CT_USER_ALLOC, _nSize);
int nSizeIdx;
if (_nSize > 512) {
if (_nSize > N_MAX_FAST_SIZE) {
void* ptr = LargeBlockAlloc(_nSize, CT_LARGE_ALLOC);
#if defined(LFALLOC_DBG)
ptr = TrackAllocation(ptr, size, N_SIZES);
#endif
return ptr;
}
nSizeIdx = size2idxArr2[(_nSize - 1) >> 8];
} else
nSizeIdx = size2idxArr1[1 + (((int)_nSize - 1) >> 3)];
IncrementCounter(CT_SMALL_ALLOC, nSizeIdxToSize[nSizeIdx]);
// check per thread buffer
TThreadAllocInfo* thr = pThreadInfo;
if (!thr) {
AllocThreadInfo();
thr = pThreadInfo;
if (!thr) {
void* ptr = LFAllocNoCache(nSizeIdx, MEM_DEFRAG);
#if defined(LFALLOC_DBG)
ptr = TrackAllocation(ptr, size, nSizeIdx);
#endif
return ptr;
}
}
{
int& freePtrIdx = thr->FreePtrIndex[nSizeIdx];
if (freePtrIdx < THREAD_BUF) {
void* ptr = thr->FreePtrs[nSizeIdx][freePtrIdx++];
#if defined(LFALLOC_DBG)
ptr = TrackAllocation(ptr, size, nSizeIdx);
#endif
return ptr;
}
// try to alloc from global free list
char* buf[FL_GROUP_SIZE];
int count = TakeBlocksFromGlobalFreeList(nSizeIdx, buf);
if (count == 0) {
count = LFAllocNoCacheMultiple(nSizeIdx, buf);
if (count == 0) {
NMalloc::AbortFromCorruptedAllocator("no way LFAllocNoCacheMultiple() can fail");
}
}
char** dstBuf = thr->FreePtrs[nSizeIdx] + freePtrIdx - 1;
for (int i = 0; i < count - 1; ++i)
dstBuf[-i] = buf[i];
freePtrIdx -= count - 1;
void* ptr = buf[count - 1];
#if defined(LFALLOC_DBG)
ptr = TrackAllocation(ptr, size, nSizeIdx);
#endif
return ptr;
}
}
static Y_FORCE_INLINE void* LFAlloc(size_t _nSize) {
void* res = LFAllocImpl(_nSize);
#ifdef DBG_FILL_MEMORY
if (FillMemoryOnAllocation && res && (_nSize <= DBG_FILL_MAX_SIZE)) {
memset(res, 0xcf, _nSize);
}
#endif
return res;
}
static Y_FORCE_INLINE void LFFree(void* p) {
#if defined(LFALLOC_DBG)
if (p == nullptr)
return;
p = GetAllocHeader(p);
#endif
uintptr_t chkOffset = ((char*)p - ALLOC_START) - 1ll;
if (chkOffset >= N_MAX_WORKSET_SIZE) {
if (p == nullptr)
return;
#if defined(LFALLOC_DBG)
TrackDeallocation(p, N_SIZES);
#endif
LargeBlockFree(p, CT_LARGE_FREE);
return;
}
uintptr_t chunk = ((char*)p - ALLOC_START) / N_CHUNK_SIZE;
ptrdiff_t nSizeIdx = chunkSizeIdx[chunk];
if (nSizeIdx <= 0) {
#if defined(LFALLOC_DBG)
TrackDeallocation(p, N_SIZES);
#endif
LargeBlockFree(p, CT_LARGE_FREE);
return;
}
#if defined(LFALLOC_DBG)
TrackDeallocation(p, nSizeIdx);
#endif
#ifdef DBG_FILL_MEMORY
memset(p, 0xfe, nSizeIdxToSize[nSizeIdx]);
#endif
IncrementCounter(CT_SMALL_FREE, nSizeIdxToSize[nSizeIdx]);
// try to store info to per thread buf
TThreadAllocInfo* thr = pThreadInfo;
if (thr) {
int& freePtrIdx = thr->FreePtrIndex[nSizeIdx];
if (freePtrIdx > borderSizes[nSizeIdx]) {
thr->FreePtrs[nSizeIdx][--freePtrIdx] = (char*)p;
return;
}
// move several pointers to global free list
int freeCount = FL_GROUP_SIZE;
if (freeCount > THREAD_BUF - freePtrIdx)
freeCount = THREAD_BUF - freePtrIdx;
char** freePtrs = thr->FreePtrs[nSizeIdx];
PutBlocksToGlobalFreeList(nSizeIdx, freePtrs + freePtrIdx, freeCount);
freePtrIdx += freeCount;
freePtrs[--freePtrIdx] = (char*)p;
} else {
AllocThreadInfo();
PutBlocksToGlobalFreeList(nSizeIdx, (char**)&p, 1);
}
}
static size_t LFGetSize(const void* p) {
#if defined(LFALLOC_DBG)
if (p == nullptr)
return 0;
return GetAllocHeader(const_cast<void*>(p))->Size;
#endif
uintptr_t chkOffset = ((const char*)p - ALLOC_START);
if (chkOffset >= N_MAX_WORKSET_SIZE) {
if (p == nullptr)
return 0;
return TLargeBlk::As(p)->Pages * 4096ll;
}
uintptr_t chunk = ((const char*)p - ALLOC_START) / N_CHUNK_SIZE;
ptrdiff_t nSizeIdx = chunkSizeIdx[chunk];
if (nSizeIdx <= 0)
return TLargeBlk::As(p)->Pages * 4096ll;
return nSizeIdxToSize[nSizeIdx];
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Output mem alloc stats
const int N_PAGE_SIZE = 4096;
static void DebugTraceMMgr(const char* pszFormat, ...) // __cdecl
{
static char buff[20000];
va_list va;
//
va_start(va, pszFormat);
vsprintf(buff, pszFormat, va);
va_end(va);
//
#ifdef _win_
OutputDebugStringA(buff);
#else
fputs(buff, stderr);
#endif
}
struct TChunkStats {
char *Start, *Finish;
i64 Size;
char* Entries;
i64 FreeCount;
TChunkStats(size_t chunk, i64 size, char* entries)
: Size(size)
, Entries(entries)
, FreeCount(0)
{
Start = ALLOC_START + chunk * N_CHUNK_SIZE;
Finish = Start + N_CHUNK_SIZE;
}
void CheckBlock(char* pBlock) {
if (pBlock && pBlock >= Start && pBlock < Finish) {
++FreeCount;
i64 nShift = pBlock - Start;
i64 nOffsetInStep = nShift & (N_CHUNK_SIZE - 1);
Entries[nOffsetInStep / Size] = 1;
}
}
void SetGlobalFree(char* ptr) {
i64 nShift = ptr - Start;
i64 nOffsetInStep = nShift & (N_CHUNK_SIZE - 1);
while (nOffsetInStep + Size <= N_CHUNK_SIZE) {
++FreeCount;
Entries[nOffsetInStep / Size] = 1;
nOffsetInStep += Size;
}
}
};
static void DumpMemoryBlockUtilizationLocked() {
TFreeListGroup* wholeLists[N_SIZES];
for (int nSizeIdx = 0; nSizeIdx < N_SIZES; ++nSizeIdx) {
wholeLists[nSizeIdx] = (TFreeListGroup*)globalFreeLists[nSizeIdx].GetWholeList();
}
char* bfList = (char*)blockFreeList.GetWholeList();
DebugTraceMMgr("memory blocks utilisation stats:\n");
i64 nTotalAllocated = 0, nTotalFree = 0, nTotalBadPages = 0, nTotalPages = 0, nTotalUsed = 0, nTotalLocked = 0;
i64 nTotalGroupBlocks = 0;
char* entries;
entries = (char*)SystemAlloc((N_CHUNK_SIZE / 4));
for (size_t k = 0; k < N_CHUNKS; ++k) {
if (chunkSizeIdx[k] <= 0) {
if (chunkSizeIdx[k] == -1)
nTotalLocked += N_CHUNK_SIZE;
continue;
}
i64 nSizeIdx = chunkSizeIdx[k];
i64 nSize = nSizeIdxToSize[nSizeIdx];
TChunkStats cs(k, nSize, entries);
int nEntriesTotal = N_CHUNK_SIZE / nSize;
memset(entries, 0, nEntriesTotal);
for (TFreeListGroup* g = wholeLists[nSizeIdx]; g; g = g->Next) {
for (auto& ptr : g->Ptrs)
cs.CheckBlock(ptr);
}
TChunkStats csGB(k, nSize, entries);
if (nSizeIdx == FREE_LIST_GROUP_SIZEIDX) {
for (auto g : wholeLists) {
for (; g; g = g->Next)
csGB.CheckBlock((char*)g);
}
for (char* blk = bfList; blk; blk = *(char**)blk)
csGB.CheckBlock(blk);
nTotalGroupBlocks += csGB.FreeCount * nSize;
}
if (((globalCurrentPtr[nSizeIdx] - ALLOC_START) / N_CHUNK_SIZE) == k)
cs.SetGlobalFree(globalCurrentPtr[nSizeIdx]);
nTotalUsed += (nEntriesTotal - cs.FreeCount - csGB.FreeCount) * nSize;
char pages[N_CHUNK_SIZE / N_PAGE_SIZE];
memset(pages, 0, sizeof(pages));
for (int i = 0, nShift = 0; i < nEntriesTotal; ++i, nShift += nSize) {
int nBit = 0;
if (entries[i])
nBit = 1; // free entry
else
nBit = 2; // used entry
for (i64 nDelta = nSize - 1; nDelta >= 0; nDelta -= N_PAGE_SIZE)
pages[(nShift + nDelta) / N_PAGE_SIZE] |= nBit;
}
i64 nBadPages = 0;
for (auto page : pages) {
nBadPages += page == 3;
nTotalPages += page != 1;
}
DebugTraceMMgr("entry = %lld; size = %lld; free = %lld; system %lld; utilisation = %g%%, fragmentation = %g%%\n",
k, nSize, cs.FreeCount * nSize, csGB.FreeCount * nSize,
(N_CHUNK_SIZE - cs.FreeCount * nSize) * 100.0f / N_CHUNK_SIZE, 100.0f * nBadPages / Y_ARRAY_SIZE(pages));
nTotalAllocated += N_CHUNK_SIZE;
nTotalFree += cs.FreeCount * nSize;
nTotalBadPages += nBadPages;
}
SystemFree(entries);
DebugTraceMMgr("Total allocated = %llu, free = %lld, system = %lld, locked for future use %lld, utilisation = %g, fragmentation = %g\n",
nTotalAllocated, nTotalFree, nTotalGroupBlocks, nTotalLocked,
100.0f * (nTotalAllocated - nTotalFree) / nTotalAllocated, 100.0f * nTotalBadPages / nTotalPages);
DebugTraceMMgr("Total %lld bytes used, %lld bytes in used pages\n", nTotalUsed, nTotalPages * N_PAGE_SIZE);
for (int nSizeIdx = 0; nSizeIdx < N_SIZES; ++nSizeIdx)
globalFreeLists[nSizeIdx].ReturnWholeList(wholeLists[nSizeIdx]);
blockFreeList.ReturnWholeList(bfList);
}
void FlushThreadFreeList() {
if (pThreadInfo)
MoveSingleThreadFreeToGlobal(pThreadInfo);
}
void DumpMemoryBlockUtilization() {
// move current thread free to global lists to get better statistics
FlushThreadFreeList();
{
TLFLockHolder ls(&LFGlobalLock);
DumpMemoryBlockUtilizationLocked();
}
}
//////////////////////////////////////////////////////////////////////////
// malloc api
static bool LFAlloc_SetParam(const char* param, const char* value) {
if (!strcmp(param, "LB_LIMIT_TOTAL_SIZE")) {
LB_LIMIT_TOTAL_SIZE = atoi(value);
return true;
}
if (!strcmp(param, "LB_LIMIT_TOTAL_SIZE_BYTES")) {
LB_LIMIT_TOTAL_SIZE = (atoi(value) + N_PAGE_SIZE - 1) / N_PAGE_SIZE;
return true;
}
#ifdef DBG_FILL_MEMORY
if (!strcmp(param, "FillMemoryOnAllocation")) {
FillMemoryOnAllocation = !strcmp(value, "true");
return true;
}
#endif
if (!strcmp(param, "TransparentHugePages")) {
TransparentHugePages = !strcmp(value, "true");
return true;
}
if (!strcmp(param, "MapHugeTLB")) {
MapHugeTLB = !strcmp(value, "true");
return true;
}
if (!strcmp(param, "EnableDefrag")) {
EnableDefrag = !strcmp(value, "true");
return true;
}
return false;
};
static const char* LFAlloc_GetParam(const char* param) {
struct TParam {
const char* Name;
const char* Value;
};
static const TParam Params[] = {
{"GetLFAllocCounterFast", (const char*)&GetLFAllocCounterFast},
{"GetLFAllocCounterFull", (const char*)&GetLFAllocCounterFull},
#if defined(LFALLOC_DBG)
{"SetThreadAllocTag", (const char*)&SetThreadAllocTag},
{"SetProfileCurrentThread", (const char*)&SetProfileCurrentThread},
{"SetProfileAllThreads", (const char*)&SetProfileAllThreads},
{"SetAllocationSamplingEnabled", (const char*)&SetAllocationSamplingEnabled},
{"SetAllocationSampleRate", (const char*)&SetAllocationSampleRate},
{"SetAllocationSampleMaxSize", (const char*)&SetAllocationSampleMaxSize},
{"SetAllocationCallback", (const char*)&SetAllocationCallback},
{"SetDeallocationCallback", (const char*)&SetDeallocationCallback},
{"GetPerTagAllocInfo", (const char*)&GetPerTagAllocInfo},
#endif // LFALLOC_DBG
};
for (int i = 0; i < Y_ARRAY_SIZE(Params); ++i) {
if (strcmp(param, Params[i].Name) == 0) {
return Params[i].Value;
}
}
return nullptr;
}
static Y_FORCE_INLINE int LFPosixMemalign(void** memptr, size_t alignment, size_t size) {
if (Y_UNLIKELY(alignment > 4096)) {
const char* error = "Larger alignment are not guaranteed with this implementation\n";
#ifdef _win_
OutputDebugStringA(error);
#endif
NMalloc::AbortFromCorruptedAllocator(error);
}
size_t bigsize = size;
if (bigsize <= alignment) {
bigsize = alignment;
} else if (bigsize < 2 * alignment) {
bigsize = 2 * alignment;
}
#if defined(LFALLOC_DBG)
if (alignment > sizeof(TAllocHeader)) {
bigsize += alignment;
}
#endif
*memptr = LFAlloc(bigsize);
#if defined(LFALLOC_DBG)
if (alignment > sizeof(TAllocHeader)) {
// memptr isn't aligned due to alloc header
const auto* header = GetAllocHeader(*memptr);
*memptr = (void*)((const char*) (*memptr) + alignment - sizeof(TAllocHeader));
// make fake header to retrieve original header ptr on dealloc
auto* next = GetAllocHeader(*memptr);
next->Tag = DBG_ALLOC_ALIGNED_TAG;
next->Size = (uint64_t)header;
next->Cookie = 0;
}
#endif
Y_ASSERT_NOBT((intptr_t)*memptr % alignment == 0);
return 0;
}
static Y_FORCE_INLINE void* LFVAlloc(size_t size) {
const size_t pg = N_PAGE_SIZE;
void* p = nullptr;
#if defined(LFALLOC_DBG)
LFPosixMemalign(&p, pg, size);
#else
size_t bigsize = (size + pg - 1) & (~(pg - 1));
p = LFAlloc(bigsize);
#endif
Y_ASSERT_NOBT((intptr_t)p % N_PAGE_SIZE == 0);
return p;
}
#endif
|