1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
|
#include "make_fast_layout.h"
#include "node.h"
#include "writeable_node.h"
#include "write_trie_backwards.h"
#include "comptrie_impl.h"
#include <util/generic/hash.h>
#include <util/generic/utility.h>
// Lay the trie in memory in such a way that there are less cache misses when jumping from root to leaf.
// The trie becomes about 2% larger, but the access became about 25% faster in our experiments.
// Can be called on minimized and non-minimized tries, in the first case in requires half a trie more memory.
// Calling it the second time on the same trie does nothing.
//
// The algorithm is based on van Emde Boas layout as described in the yandex data school lectures on external memory algoritms
// by Maxim Babenko and Ivan Puzyrevsky. The difference is that when we cut the tree into levels
// two nodes connected by a forward link are put into the same level (because they usually lie near each other in the original tree).
// The original paper (describing the layout in Section 2.1) is:
// Michael A. Bender, Erik D. Demaine, Martin Farach-Colton. Cache-Oblivious B-Trees // SIAM Journal on Computing, volume 35, number 2, 2005, pages 341–358.
// Available on the web: http://erikdemaine.org/papers/CacheObliviousBTrees_SICOMP/
// Or: Michael A. Bender, Erik D. Demaine, and Martin Farach-Colton. Cache-Oblivious B-Trees // Proceedings of the 41st Annual Symposium
// on Foundations of Computer Science (FOCS 2000), Redondo Beach, California, November 12–14, 2000, pages 399–409.
// Available on the web: http://erikdemaine.org/papers/FOCS2000b/
// (there is not much difference between these papers, actually).
//
namespace NCompactTrie {
static size_t FindSupportingPowerOf2(size_t n) {
size_t result = 1ull << (8 * sizeof(size_t) - 1);
while (result > n) {
result >>= 1;
}
return result;
}
namespace {
class TTrieNodeSet {
public:
TTrieNodeSet() = default;
explicit TTrieNodeSet(const TOpaqueTrie& trie)
: Body(trie.Length / (8 * MinNodeSize) + 1, 0)
{
}
bool Has(size_t offset) const {
const size_t reducedOffset = ReducedOffset(offset);
return OffsetCell(reducedOffset) & OffsetMask(reducedOffset);
}
void Add(size_t offset) {
const size_t reducedOffset = ReducedOffset(offset);
OffsetCell(reducedOffset) |= OffsetMask(reducedOffset);
}
void Remove(size_t offset) {
const size_t reducedOffset = ReducedOffset(offset);
OffsetCell(reducedOffset) &= ~OffsetMask(reducedOffset);
}
void Swap(TTrieNodeSet& other) {
Body.swap(other.Body);
}
private:
static const size_t MinNodeSize = 2;
TVector<ui8> Body;
static size_t ReducedOffset(size_t offset) {
return offset / MinNodeSize;
}
static ui8 OffsetMask(size_t reducedOffset) {
return 1 << (reducedOffset % 8);
}
ui8& OffsetCell(size_t reducedOffset) {
return Body.at(reducedOffset / 8);
}
const ui8& OffsetCell(size_t reducedOffset) const {
return Body.at(reducedOffset / 8);
}
};
//---------------------------------------------------------------------
class TTrieNodeCounts {
public:
TTrieNodeCounts() = default;
explicit TTrieNodeCounts(const TOpaqueTrie& trie)
: Body(trie.Length / MinNodeSize, 0)
, IsTree(false)
{
}
size_t Get(size_t offset) const {
return IsTree ? 1 : Body.at(offset / MinNodeSize);
}
void Inc(size_t offset) {
if (IsTree) {
return;
}
ui8& count = Body.at(offset / MinNodeSize);
if (count != MaxCount) {
++count;
}
}
size_t Dec(size_t offset) {
if (IsTree) {
return 0;
}
ui8& count = Body.at(offset / MinNodeSize);
Y_ASSERT(count > 0);
if (count != MaxCount) {
--count;
}
return count;
}
void Swap(TTrieNodeCounts& other) {
Body.swap(other.Body);
::DoSwap(IsTree, other.IsTree);
}
void SetTreeMode() {
IsTree = true;
Body = TVector<ui8>();
}
private:
static const size_t MinNodeSize = 2;
static const ui8 MaxCount = 255;
TVector<ui8> Body;
bool IsTree = false;
};
//----------------------------------------------------------
class TOffsetIndex {
public:
// In all methods:
// Key --- offset from the beginning of the old trie.
// Value --- offset from the end of the new trie.
explicit TOffsetIndex(TTrieNodeCounts& counts) {
ParentCounts.Swap(counts);
}
void Add(size_t key, size_t value) {
Data[key] = value;
}
size_t Size() const {
return Data.size();
}
size_t Get(size_t key) {
auto pos = Data.find(key);
if (pos == Data.end()) {
ythrow yexception() << "Bad node walking order: trying to get node offset too early or too many times!";
}
size_t result = pos->second;
if (ParentCounts.Dec(key) == 0) {
// We don't need this offset any more.
Data.erase(pos);
}
return result;
}
private:
TTrieNodeCounts ParentCounts;
THashMap<size_t, size_t> Data;
};
//---------------------------------------------------------------------------------------
class TTrieMeasurer {
public:
TTrieMeasurer(const TOpaqueTrie& trie, bool verbose);
void Measure();
size_t GetDepth() const {
return Depth;
}
size_t GetNodeCount() const {
return NodeCount;
}
size_t GetUnminimizedNodeCount() const {
return UnminimizedNodeCount;
}
bool IsTree() const {
return NodeCount == UnminimizedNodeCount;
}
TTrieNodeCounts& GetParentCounts() {
return ParentCounts;
}
const TOpaqueTrie& GetTrie() const {
return Trie;
}
private:
const TOpaqueTrie& Trie;
size_t Depth;
TTrieNodeCounts ParentCounts;
size_t NodeCount;
size_t UnminimizedNodeCount;
const bool Verbose;
// returns depth, increments NodeCount.
size_t MeasureSubtrie(size_t rootOffset, bool isNewPath);
};
TTrieMeasurer::TTrieMeasurer(const TOpaqueTrie& trie, bool verbose)
: Trie(trie)
, Depth(0)
, ParentCounts(trie)
, NodeCount(0)
, UnminimizedNodeCount(0)
, Verbose(verbose)
{
Y_ASSERT(Trie.Data);
}
void TTrieMeasurer::Measure() {
if (Verbose) {
Cerr << "Measuring the trie..." << Endl;
}
NodeCount = 0;
UnminimizedNodeCount = 0;
Depth = MeasureSubtrie(0, true);
if (IsTree()) {
ParentCounts.SetTreeMode();
}
if (Verbose) {
Cerr << "Unminimized node count: " << UnminimizedNodeCount << Endl;
Cerr << "Trie depth: " << Depth << Endl;
Cerr << "Node count: " << NodeCount << Endl;
}
}
// A chain of nodes linked by forward links
// is considered one node with many left and right children
// for depth measuring here and in
// TVanEmdeBoasReverseNodeEnumerator::FindDescendants.
size_t TTrieMeasurer::MeasureSubtrie(size_t rootOffset, bool isNewPath) {
Y_ASSERT(rootOffset < Trie.Length);
TNode node(Trie.Data, rootOffset, Trie.SkipFunction);
size_t depth = 0;
for (;;) {
++UnminimizedNodeCount;
if (Verbose) {
ShowProgress(UnminimizedNodeCount);
}
if (isNewPath) {
if (ParentCounts.Get(node.GetOffset()) > 0) {
isNewPath = false;
} else {
++NodeCount;
}
ParentCounts.Inc(node.GetOffset());
}
if (node.GetLeftOffset()) {
depth = Max(depth, 1 + MeasureSubtrie(node.GetLeftOffset(), isNewPath));
}
if (node.GetRightOffset()) {
depth = Max(depth, 1 + MeasureSubtrie(node.GetRightOffset(), isNewPath));
}
if (node.GetForwardOffset()) {
node = TNode(Trie.Data, node.GetForwardOffset(), Trie.SkipFunction);
} else {
break;
}
}
return depth;
}
//--------------------------------------------------------------------------------------
using TLevelNodes = TVector<size_t>;
struct TLevel {
size_t Depth;
TLevelNodes Nodes;
explicit TLevel(size_t depth)
: Depth(depth)
{
}
};
//----------------------------------------------------------------------------------------
class TVanEmdeBoasReverseNodeEnumerator: public TReverseNodeEnumerator {
public:
TVanEmdeBoasReverseNodeEnumerator(TTrieMeasurer& measurer, bool verbose)
: Fresh(true)
, Trie(measurer.GetTrie())
, Depth(measurer.GetDepth())
, MaxIndexSize(0)
, BackIndex(measurer.GetParentCounts())
, ProcessedNodes(measurer.GetTrie())
, Verbose(verbose)
{
}
bool Move() override {
if (!Fresh) {
CentralWord.pop_back();
}
if (CentralWord.empty()) {
return MoveCentralWordStart();
}
return true;
}
const TNode& Get() const {
return CentralWord.back();
}
size_t GetLeafLength() const override {
return Get().GetLeafLength();
}
// Returns recalculated offset from the end of the current node.
size_t PrepareOffset(size_t absoffset, size_t resultLength) {
if (!absoffset)
return NPOS;
return resultLength - BackIndex.Get(absoffset);
}
size_t RecreateNode(char* buffer, size_t resultLength) override {
TWriteableNode newNode(Get(), Trie.Data);
newNode.ForwardOffset = PrepareOffset(Get().GetForwardOffset(), resultLength);
newNode.LeftOffset = PrepareOffset(Get().GetLeftOffset(), resultLength);
newNode.RightOffset = PrepareOffset(Get().GetRightOffset(), resultLength);
const size_t len = newNode.Pack(buffer);
ProcessedNodes.Add(Get().GetOffset());
BackIndex.Add(Get().GetOffset(), resultLength + len);
MaxIndexSize = Max(MaxIndexSize, BackIndex.Size());
return len;
}
private:
bool Fresh;
TOpaqueTrie Trie;
size_t Depth;
size_t MaxIndexSize;
TVector<TLevel> Trace;
TOffsetIndex BackIndex;
TVector<TNode> CentralWord;
TTrieNodeSet ProcessedNodes;
const bool Verbose;
private:
bool IsVisited(size_t offset) const {
return ProcessedNodes.Has(offset);
}
void AddCascade(size_t step) {
Y_ASSERT(!(step & (step - 1))); // Should be a power of 2.
while (step > 0) {
size_t root = Trace.back().Nodes.back();
TLevel level(Trace.back().Depth + step);
Trace.push_back(level);
size_t actualStep = FindSupportingPowerOf2(FindDescendants(root, step, Trace.back().Nodes));
if (actualStep != step) {
// Retry with a smaller step.
Y_ASSERT(actualStep < step);
step = actualStep;
Trace.pop_back();
} else {
step /= 2;
}
}
}
void FillCentralWord() {
CentralWord.clear();
CentralWord.push_back(TNode(Trie.Data, Trace.back().Nodes.back(), Trie.SkipFunction));
// Do not check for epsilon links, as the traversal order now is different.
while (CentralWord.back().GetForwardOffset() && !IsVisited(CentralWord.back().GetForwardOffset())) {
CentralWord.push_back(TNode(Trie.Data, CentralWord.back().GetForwardOffset(), Trie.SkipFunction));
}
}
bool MoveCentralWordStart() {
do {
if (Fresh) {
TLevel root(0);
Trace.push_back(root);
Trace.back().Nodes.push_back(0);
const size_t sectionDepth = FindSupportingPowerOf2(Depth);
AddCascade(sectionDepth);
Fresh = false;
} else {
Trace.back().Nodes.pop_back();
if (Trace.back().Nodes.empty() && Trace.size() == 1) {
if (Verbose) {
Cerr << "Max index size: " << MaxIndexSize << Endl;
Cerr << "Current index size: " << BackIndex.Size() << Endl;
}
// We just popped the root.
return false;
}
size_t lastStep = Trace.back().Depth - Trace[Trace.size() - 2].Depth;
if (Trace.back().Nodes.empty()) {
Trace.pop_back();
}
AddCascade(lastStep / 2);
}
} while (IsVisited(Trace.back().Nodes.back()));
FillCentralWord();
return true;
}
// Returns the maximal depth it has reached while searching.
// This is a method because it needs OffsetIndex to skip processed nodes.
size_t FindDescendants(size_t rootOffset, size_t depth, TLevelNodes& result) const {
if (depth == 0) {
result.push_back(rootOffset);
return 0;
}
size_t actualDepth = 0;
TNode node(Trie.Data, rootOffset, Trie.SkipFunction);
for (;;) {
if (node.GetLeftOffset() && !IsVisited(node.GetLeftOffset())) {
actualDepth = Max(actualDepth,
1 + FindDescendants(node.GetLeftOffset(), depth - 1, result));
}
if (node.GetRightOffset() && !IsVisited(node.GetRightOffset())) {
actualDepth = Max(actualDepth,
1 + FindDescendants(node.GetRightOffset(), depth - 1, result));
}
if (node.GetForwardOffset() && !IsVisited(node.GetForwardOffset())) {
node = TNode(Trie.Data, node.GetForwardOffset(), Trie.SkipFunction);
} else {
break;
}
}
return actualDepth;
}
};
} // Anonymous namespace.
//-----------------------------------------------------------------------------------
size_t RawCompactTrieFastLayoutImpl(IOutputStream& os, const TOpaqueTrie& trie, bool verbose) {
if (!trie.Data || !trie.Length) {
return 0;
}
TTrieMeasurer mes(trie, verbose);
mes.Measure();
TVanEmdeBoasReverseNodeEnumerator enumerator(mes, verbose);
return WriteTrieBackwards(os, enumerator, verbose);
}
}
|