aboutsummaryrefslogtreecommitdiffstats
path: root/library/cpp/actors/core/harmonizer.cpp
blob: a1838ee2b09272ff844faa20cbff9cc1ba9b0034 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
#include "harmonizer.h"

#include "probes.h"
#include "actorsystem.h"

#include <library/cpp/actors/util/cpu_load_log.h>
#include <library/cpp/actors/util/datetime.h>
#include <library/cpp/actors/util/intrinsics.h>

#include <util/system/spinlock.h>

#include <algorithm>

namespace NActors {

LWTRACE_USING(ACTORLIB_PROVIDER);

constexpr bool CheckBinaryPower(ui64 value) {
    return !(value & (value - 1));
}

template <ui8 HistoryBufferSize = 8>
struct TValueHistory {
    static_assert(CheckBinaryPower(HistoryBufferSize));

    double History[HistoryBufferSize] = {0.0};
    ui64 HistoryIdx = 0;
    ui64 LastTs = Max<ui64>();
    double LastUs = 0.0;
    double AccumulatedUs = 0.0;
    ui64 AccumulatedTs = 0;

    template <bool WithTail=false>
    double Accumulate(auto op, auto comb, ui8 seconds) {
        double acc = AccumulatedUs;
        size_t idx = HistoryIdx;
        ui8 leftSeconds = seconds;
        if constexpr (!WithTail) {
            idx--;
            leftSeconds--;
            if (idx >= HistoryBufferSize) {
                idx = HistoryBufferSize - 1;
            }
            acc = History[idx];
        }
        do {
            idx--;
            leftSeconds--;
            if (idx >= HistoryBufferSize) {
                idx = HistoryBufferSize - 1;
            }
            if constexpr (WithTail) {
                acc = op(acc, History[idx]);
            } else if (leftSeconds) {
                acc = op(acc, History[idx]);
            } else {
                ui64 tsInSecond = Us2Ts(1'000'000.0);
                acc = op(acc, History[idx] * (tsInSecond - AccumulatedTs) / tsInSecond);
            }
        } while (leftSeconds);
        double duration = 1'000'000.0 * seconds;
        if constexpr (WithTail) {
            duration += Ts2Us(AccumulatedTs);
        }
        return comb(acc, duration);
    }

    template <bool WithTail=false>
    double GetAvgPartForLastSeconds(ui8 seconds) {
        auto sum = [](double acc, double value) {
            return acc + value;
        };
        auto avg = [](double sum, double duration) {
            return sum / duration;
        };
        return Accumulate<WithTail>(sum, avg, seconds);
    }

    double GetAvgPart() {
        return GetAvgPartForLastSeconds<true>(HistoryBufferSize);
    }

    double GetMaxForLastSeconds(ui8 seconds) {
        auto max = [](const double& acc, const double& value) {
            return Max(acc, value);
        };
        auto fst = [](const double& value, const double&) { return value; };
        return Accumulate<false>(max, fst, seconds);
    }

    double GetMax() {
        return GetMaxForLastSeconds(HistoryBufferSize);
    }

    i64 GetMaxInt() {
        return static_cast<i64>(GetMax());
    }

    double GetMinForLastSeconds(ui8 seconds) {
        auto min = [](const double& acc, const double& value) {
            return Min(acc, value);
        };
        auto fst = [](const double& value, const double&) { return value; };
        return Accumulate<false>(min, fst, seconds);
    }

    double GetMin() {
        return GetMinForLastSeconds(HistoryBufferSize);
    }

    i64 GetMinInt() {
        return static_cast<i64>(GetMin());
    }

    void Register(ui64 ts, double valueUs) {
        if (ts < LastTs) {
            LastTs = ts;
            LastUs = valueUs;
            AccumulatedUs = 0.0;
            AccumulatedTs = 0;
            return;
        }
        ui64 lastTs = std::exchange(LastTs, ts);
        ui64 dTs = ts - lastTs;
        double lastUs = std::exchange(LastUs, valueUs);
        double dUs = valueUs - lastUs;
        LWPROBE(RegisterValue, ts, lastTs, dTs, Us2Ts(8'000'000.0), valueUs, lastUs, dUs);

        if (dTs > Us2Ts(8'000'000.0)) {
            dUs = dUs * 1'000'000.0 / Ts2Us(dTs);
            for (size_t idx = 0; idx < HistoryBufferSize; ++idx) {
                History[idx] = dUs;
            }
            AccumulatedUs = 0.0;
            AccumulatedTs = 0;
            return;
        }

        while (dTs > 0) {
            if (AccumulatedTs + dTs < Us2Ts(1'000'000.0)) {
                AccumulatedTs += dTs;
                AccumulatedUs += dUs;
                break;
            } else {
                ui64 addTs = Us2Ts(1'000'000.0) - AccumulatedTs;
                double addUs = dUs * addTs / dTs;
                dTs -= addTs;
                dUs -= addUs;
                History[HistoryIdx] = AccumulatedUs + addUs;
                HistoryIdx = (HistoryIdx + 1) % HistoryBufferSize;
                AccumulatedUs = 0.0;
                AccumulatedTs = 0;
            }
        }
    }
};

struct TThreadInfo {
    TValueHistory<8> Consumed;
    TValueHistory<8> Booked;
};

struct TPoolInfo {
    std::vector<TThreadInfo> ThreadInfo;
    IExecutorPool* Pool = nullptr;
    i16 DefaultThreadCount = 0;
    i16 MinThreadCount = 0;
    i16 MaxThreadCount = 0;
    i16 Priority = 0;
    NMonitoring::TDynamicCounters::TCounterPtr AvgPingCounter;
    NMonitoring::TDynamicCounters::TCounterPtr AvgPingCounterWithSmallWindow;
    ui32 MaxAvgPingUs = 0;
    ui64 LastUpdateTs = 0;
    ui64 NotEnoughCpuExecutions = 0;
    ui64 NewNotEnoughCpuExecutions = 0;

    TAtomic LastFlags = 0; // 0 - isNeedy; 1 - isStarved; 2 - isHoggish
    TAtomic IncreasingThreadsByNeedyState = 0;
    TAtomic DecreasingThreadsByStarvedState = 0;
    TAtomic DecreasingThreadsByHoggishState = 0;
    TAtomic PotentialMaxThreadCount = 0;

    TValueHistory<16> Consumed;
    TValueHistory<16> Booked;

    TAtomic MaxConsumedCpu = 0;
    TAtomic MinConsumedCpu = 0;
    TAtomic MaxBookedCpu = 0;
    TAtomic MinBookedCpu = 0;

    bool IsBeingStopped(i16 threadIdx);
    double GetBooked(i16 threadIdx);
    double GetlastSecondPoolBooked(i16 threadIdx);
    double GetConsumed(i16 threadIdx);
    double GetlastSecondPoolConsumed(i16 threadIdx);
    TCpuConsumption PullStats(ui64 ts);
    i16 GetThreadCount();
    void SetThreadCount(i16 threadCount);
    bool IsAvgPingGood();
};

bool TPoolInfo::IsBeingStopped(i16 threadIdx) {
    return Pool->IsThreadBeingStopped(threadIdx);
}

double TPoolInfo::GetBooked(i16 threadIdx) {
    if ((size_t)threadIdx < ThreadInfo.size()) {
        return ThreadInfo[threadIdx].Booked.GetAvgPart();
    }
    return 0.0;
}

double TPoolInfo::GetlastSecondPoolBooked(i16 threadIdx) {
    if ((size_t)threadIdx < ThreadInfo.size()) {
        return ThreadInfo[threadIdx].Booked.GetAvgPartForLastSeconds(1);
    }
    return 0.0;
}

double TPoolInfo::GetConsumed(i16 threadIdx) {
    if ((size_t)threadIdx < ThreadInfo.size()) {
        return ThreadInfo[threadIdx].Consumed.GetAvgPart();
    }
    return 0.0;
}

double TPoolInfo::GetlastSecondPoolConsumed(i16 threadIdx) {
    if ((size_t)threadIdx < ThreadInfo.size()) {
        return ThreadInfo[threadIdx].Consumed.GetAvgPartForLastSeconds(1);
    }
    return 0.0;
}

#define UNROLL_HISTORY(history) (history)[0], (history)[1], (history)[2], (history)[3], (history)[4], (history)[5], (history)[6], (history)[7]
TCpuConsumption TPoolInfo::PullStats(ui64 ts) {
    TCpuConsumption acc;
    for (i16 threadIdx = 0; threadIdx < MaxThreadCount; ++threadIdx) {
        TThreadInfo &threadInfo = ThreadInfo[threadIdx];
        TCpuConsumption cpuConsumption = Pool->GetThreadCpuConsumption(threadIdx);
        acc.Add(cpuConsumption);
        threadInfo.Consumed.Register(ts, cpuConsumption.ConsumedUs);
        LWPROBE(SavedValues, Pool->PoolId, Pool->GetName(), "consumed", UNROLL_HISTORY(threadInfo.Consumed.History));
        threadInfo.Booked.Register(ts, cpuConsumption.BookedUs);
        LWPROBE(SavedValues, Pool->PoolId, Pool->GetName(), "booked", UNROLL_HISTORY(threadInfo.Booked.History));
    }
    Consumed.Register(ts, acc.ConsumedUs);
    RelaxedStore(&MaxConsumedCpu, Consumed.GetMaxInt());
    RelaxedStore(&MinConsumedCpu, Consumed.GetMinInt());
    Booked.Register(ts, acc.BookedUs);
    RelaxedStore(&MaxBookedCpu, Booked.GetMaxInt());
    RelaxedStore(&MinBookedCpu, Booked.GetMinInt());
    NewNotEnoughCpuExecutions = acc.NotEnoughCpuExecutions - NotEnoughCpuExecutions;
    NotEnoughCpuExecutions = acc.NotEnoughCpuExecutions;
    return acc;
}
#undef UNROLL_HISTORY

i16 TPoolInfo::GetThreadCount() {
    return Pool->GetThreadCount();
}

void TPoolInfo::SetThreadCount(i16 threadCount) {
    Pool->SetThreadCount(threadCount);
}

bool TPoolInfo::IsAvgPingGood() {
    bool res = true;
    if (AvgPingCounter) {
        res &= *AvgPingCounter > MaxAvgPingUs;
    }
    if (AvgPingCounterWithSmallWindow) {
        res &= *AvgPingCounterWithSmallWindow > MaxAvgPingUs;
    }
    return res;
}

class THarmonizer: public IHarmonizer {
private:
    std::atomic<bool> IsDisabled = false;
    TSpinLock Lock;
    std::atomic<ui64> NextHarmonizeTs = 0;
    std::vector<TPoolInfo> Pools;
    std::vector<ui16> PriorityOrder;

    TValueHistory<16> Consumed;
    TValueHistory<16> Booked;

    TAtomic MaxConsumedCpu = 0;
    TAtomic MinConsumedCpu = 0;
    TAtomic MaxBookedCpu = 0;
    TAtomic MinBookedCpu = 0;

    void PullStats(ui64 ts);
    void HarmonizeImpl(ui64 ts);
    void CalculatePriorityOrder();
public:
    THarmonizer(ui64 ts);
    virtual ~THarmonizer();
    double Rescale(double value) const;
    void Harmonize(ui64 ts) override;
    void DeclareEmergency(ui64 ts) override;
    void AddPool(IExecutorPool* pool, TSelfPingInfo *pingInfo) override;
    void Enable(bool enable) override;
    TPoolHarmonizerStats GetPoolStats(i16 poolId) const override;
    THarmonizerStats GetStats() const override;
};

THarmonizer::THarmonizer(ui64 ts) {
    NextHarmonizeTs = ts;
}

THarmonizer::~THarmonizer() {
}

double THarmonizer::Rescale(double value) const {
  return Max(0.0, Min(1.0, value * (1.0/0.9)));
}

void THarmonizer::PullStats(ui64 ts) {
    TCpuConsumption acc;
    for (TPoolInfo &pool : Pools) {
        TCpuConsumption consumption = pool.PullStats(ts);
        acc.Add(consumption);
    }
    Consumed.Register(ts, acc.ConsumedUs);
    RelaxedStore(&MaxConsumedCpu, Consumed.GetMaxInt());
    RelaxedStore(&MinConsumedCpu, Consumed.GetMinInt());
    Booked.Register(ts, acc.BookedUs);
    RelaxedStore(&MaxBookedCpu, Booked.GetMaxInt());
    RelaxedStore(&MinBookedCpu, Booked.GetMinInt());
}

Y_FORCE_INLINE bool IsStarved(double consumed, double booked) {
    return Max(consumed, booked) > 0.1 && consumed < booked * 0.7;
}

Y_FORCE_INLINE bool IsHoggish(double booked, ui16 currentThreadCount) {
    return booked < currentThreadCount - 1;
}

void THarmonizer::HarmonizeImpl(ui64 ts) {
    bool isStarvedPresent = false;
    double booked = 0.0;
    double consumed = 0.0;
    double lastSecondBooked = 0.0;
    i64 beingStopped = 0;
    i64 total = 0;
    TStackVec<size_t, 8> needyPools;
    TStackVec<size_t, 8> hoggishPools;
    for (size_t poolIdx = 0; poolIdx < Pools.size(); ++poolIdx) {
        TPoolInfo& pool = Pools[poolIdx];
        total += pool.DefaultThreadCount;
        double poolBooked = 0.0;
        double poolConsumed = 0.0;
        double lastSecondPoolBooked = 0.0;
        double lastSecondPoolConsumed = 0.0;
        beingStopped += pool.Pool->GetBlockingThreadCount();
        for (i16 threadIdx = 0; threadIdx < pool.MaxThreadCount; ++threadIdx) {
            poolBooked += Rescale(pool.GetBooked(threadIdx));
            lastSecondPoolBooked += Rescale(pool.GetlastSecondPoolBooked(threadIdx));
            poolConsumed += Rescale(pool.GetConsumed(threadIdx));
            lastSecondPoolConsumed += Rescale(pool.GetlastSecondPoolConsumed(threadIdx));
        }
        bool isStarved = IsStarved(poolConsumed, poolBooked) || IsStarved(lastSecondPoolConsumed, lastSecondPoolBooked);
        if (isStarved) {
            isStarvedPresent = true;
        }
        ui32 currentThreadCount = pool.GetThreadCount();
        bool isNeedy = (pool.IsAvgPingGood() || pool.NewNotEnoughCpuExecutions) && poolBooked >= currentThreadCount;
        if (pool.AvgPingCounter) {
            if (pool.LastUpdateTs + Us2Ts(3'000'000ull) > ts) {
                isNeedy = false;
            } else {
                pool.LastUpdateTs = ts;
            }
        }
        if (isNeedy) {
            needyPools.push_back(poolIdx);
        }
        bool isHoggish = IsHoggish(poolBooked, currentThreadCount)
                || IsHoggish(lastSecondPoolBooked, currentThreadCount);
        if (isHoggish) {
            hoggishPools.push_back(poolIdx);
        }
        booked += poolBooked;
        consumed += poolConsumed;
        AtomicSet(pool.LastFlags, (i64)isNeedy | ((i64)isStarved << 1) | ((i64)isHoggish << 2));
        LWPROBE(HarmonizeCheckPool, poolIdx, pool.Pool->GetName(), poolBooked, poolConsumed, lastSecondPoolBooked, lastSecondPoolConsumed, pool.GetThreadCount(), pool.MaxThreadCount, isStarved, isNeedy, isHoggish);
    }
    double budget = total - Max(booked, lastSecondBooked);
    i16 budgetInt = static_cast<i16>(Max(budget, 0.0));
    if (budget < -0.1) {
        isStarvedPresent = true;
    }
    for (size_t poolIdx = 0; poolIdx < Pools.size(); ++poolIdx) {
        TPoolInfo& pool = Pools[poolIdx];
        AtomicSet(pool.PotentialMaxThreadCount, Min(pool.MaxThreadCount, budgetInt));
    }
    double overbooked = consumed - booked;
    if (overbooked < 0) {
        isStarvedPresent = false;
    }
    if (isStarvedPresent) {
        // last_starved_at_consumed_value = сумма по всем пулам consumed;
        // TODO(cthulhu): использовать как лимит планвно устремлять этот лимит к total,
        // использовать вместо total
        if (beingStopped && beingStopped >= overbooked) {
            // do nothing
        } else {
            TStackVec<size_t> reorder;
            for (size_t i = 0; i < Pools.size(); ++i) {
                reorder.push_back(i);
            }
            for (ui16 poolIdx : PriorityOrder) {
                TPoolInfo &pool = Pools[poolIdx];
                i64 threadCount = pool.GetThreadCount();
                while (threadCount > pool.DefaultThreadCount) {
                    pool.SetThreadCount(--threadCount);
                    AtomicIncrement(pool.DecreasingThreadsByStarvedState);
                    overbooked--;
                    LWPROBE(HarmonizeOperation, poolIdx, pool.Pool->GetName(), "decrease", threadCount - 1, pool.DefaultThreadCount, pool.MaxThreadCount);
                    if (overbooked < 1) {
                        break;
                    }
                }
                if (overbooked < 1) {
                    break;
                }
            }
        }
    } else {
        for (size_t needyPoolIdx : needyPools) {
            TPoolInfo &pool = Pools[needyPoolIdx];
            if (budget >= 1.0) {
                i64 threadCount = pool.GetThreadCount();
                if (threadCount + 1 <= pool.MaxThreadCount) {
                    AtomicIncrement(pool.IncreasingThreadsByNeedyState);
                    pool.SetThreadCount(threadCount + 1);
                    budget -= 1.0;
                    LWPROBE(HarmonizeOperation, needyPoolIdx, pool.Pool->GetName(), "increase", threadCount + 1, pool.DefaultThreadCount, pool.MaxThreadCount);
                }
            }
        }
    }
    for (size_t hoggishPoolIdx : hoggishPools) {
        TPoolInfo &pool = Pools[hoggishPoolIdx];
        i64 threadCount = pool.GetThreadCount();
        if (threadCount > pool.MinThreadCount) {
            AtomicIncrement(pool.DecreasingThreadsByHoggishState);
            LWPROBE(HarmonizeOperation, hoggishPoolIdx, pool.Pool->GetName(), "decrease", threadCount - 1, pool.DefaultThreadCount, pool.MaxThreadCount);
            pool.SetThreadCount(threadCount - 1);
        }
    }
}

void THarmonizer::CalculatePriorityOrder() {
    PriorityOrder.resize(Pools.size());
    Iota(PriorityOrder.begin(), PriorityOrder.end(), 0);
    Sort(PriorityOrder.begin(), PriorityOrder.end(), [&] (i16 lhs, i16 rhs) {
        if (Pools[lhs].Priority != Pools[rhs].Priority)  {
            return Pools[lhs].Priority < Pools[rhs].Priority;
        }
        return Pools[lhs].Pool->PoolId > Pools[rhs].Pool->PoolId;
    });
}

void THarmonizer::Harmonize(ui64 ts) {
    if (IsDisabled || NextHarmonizeTs > ts || !Lock.TryAcquire()) {
        LWPROBE(TryToHarmonizeFailed, ts, NextHarmonizeTs, IsDisabled, false);
        return;
    }
    // Check again under the lock
    if (IsDisabled) {
        LWPROBE(TryToHarmonizeFailed, ts, NextHarmonizeTs, IsDisabled, true);
        Lock.Release();
        return;
    }
    // Will never reach this line disabled
    ui64 previousNextHarmonizeTs = NextHarmonizeTs.exchange(ts + Us2Ts(1'000'000ull));
    LWPROBE(TryToHarmonizeSuccess, ts, NextHarmonizeTs, previousNextHarmonizeTs);

    if (PriorityOrder.empty()) {
        CalculatePriorityOrder();
    }

    PullStats(ts);
    HarmonizeImpl(ts);

    Lock.Release();
}

void THarmonizer::DeclareEmergency(ui64 ts) {
    NextHarmonizeTs = ts;
}

void THarmonizer::AddPool(IExecutorPool* pool, TSelfPingInfo *pingInfo) {
    TGuard<TSpinLock> guard(Lock);
    TPoolInfo poolInfo;
    poolInfo.Pool = pool;
    poolInfo.DefaultThreadCount = pool->GetDefaultThreadCount();
    poolInfo.MinThreadCount = pool->GetMinThreadCount();
    poolInfo.MaxThreadCount = pool->GetMaxThreadCount();
    poolInfo.ThreadInfo.resize(poolInfo.MaxThreadCount);
    poolInfo.Priority = pool->GetPriority();
    pool->SetThreadCount(poolInfo.DefaultThreadCount);
    if (pingInfo) {
        poolInfo.AvgPingCounter = pingInfo->AvgPingCounter;
        poolInfo.AvgPingCounterWithSmallWindow = pingInfo->AvgPingCounterWithSmallWindow;
        poolInfo.MaxAvgPingUs = pingInfo->MaxAvgPingUs;
    }
    Pools.push_back(poolInfo);
    PriorityOrder.clear();
};

void THarmonizer::Enable(bool enable) {
    TGuard<TSpinLock> guard(Lock);
    IsDisabled = enable;
}

IHarmonizer* MakeHarmonizer(ui64 ts) {
    return new THarmonizer(ts);
}

TPoolHarmonizerStats THarmonizer::GetPoolStats(i16 poolId) const {
    const TPoolInfo &pool = Pools[poolId];
    ui64 flags = RelaxedLoad(&pool.LastFlags);
    return TPoolHarmonizerStats{
        .IncreasingThreadsByNeedyState = static_cast<ui64>(RelaxedLoad(&pool.IncreasingThreadsByNeedyState)),
        .DecreasingThreadsByStarvedState = static_cast<ui64>(RelaxedLoad(&pool.DecreasingThreadsByStarvedState)),
        .DecreasingThreadsByHoggishState = static_cast<ui64>(RelaxedLoad(&pool.DecreasingThreadsByHoggishState)),
        .MaxConsumedCpu = static_cast<i64>(RelaxedLoad(&pool.MaxConsumedCpu)),
        .MinConsumedCpu = static_cast<i64>(RelaxedLoad(&pool.MinConsumedCpu)),
        .MaxBookedCpu = static_cast<i64>(RelaxedLoad(&pool.MaxBookedCpu)),
        .MinBookedCpu = static_cast<i64>(RelaxedLoad(&pool.MinBookedCpu)),
        .PotentialMaxThreadCount = static_cast<i16>(RelaxedLoad(&pool.PotentialMaxThreadCount)),
        .IsNeedy = static_cast<bool>(flags & 1),
        .IsStarved = static_cast<bool>(flags & 2),
        .IsHoggish = static_cast<bool>(flags & 4),
    };
}

THarmonizerStats THarmonizer::GetStats() const {
    return THarmonizerStats{
        .MaxConsumedCpu = static_cast<i64>(RelaxedLoad(&MaxConsumedCpu)),
        .MinConsumedCpu = static_cast<i64>(RelaxedLoad(&MinConsumedCpu)),
        .MaxBookedCpu = static_cast<i64>(RelaxedLoad(&MaxBookedCpu)),
        .MinBookedCpu = static_cast<i64>(RelaxedLoad(&MinBookedCpu)),
    };
}

}