1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
|
/*
* Floating point number functions.
*
* Copyright (C) 2001-2007 Peter Johnson
*
* Based on public-domain x86 assembly code by Randall Hyde (8/28/91).
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND OTHER CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR OTHER CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "util.h"
#include <ctype.h>
#include "coretype.h"
#include "bitvect.h"
#include "file.h"
#include "errwarn.h"
#include "floatnum.h"
/* 97-bit internal floating point format:
* 0000000s eeeeeeee eeeeeeee m.....................................m
* Sign exponent mantissa (80 bits)
* 79 0
*
* Only L.O. bit of Sign byte is significant. The rest is zero.
* Exponent is bias 32767.
* Mantissa does NOT have an implied one bit (it's explicit).
*/
struct yasm_floatnum {
/*@only@*/ wordptr mantissa; /* Allocated to MANT_BITS bits */
unsigned short exponent;
unsigned char sign;
unsigned char flags;
};
/* constants describing parameters of internal floating point format */
#define MANT_BITS 80
#define MANT_BYTES 10
#define MANT_SIGDIGITS 24
#define EXP_BIAS 0x7FFF
#define EXP_INF 0xFFFF
#define EXP_MAX 0xFFFE
#define EXP_MIN 1
#define EXP_ZERO 0
/* Flag settings for flags field */
#define FLAG_ISZERO 1<<0
/* Note this structure integrates the floatnum structure */
typedef struct POT_Entry_s {
yasm_floatnum f;
int dec_exponent;
} POT_Entry;
/* "Source" for POT_Entry. */
typedef struct POT_Entry_Source_s {
unsigned char mantissa[MANT_BYTES]; /* little endian mantissa */
unsigned short exponent; /* Bias 32767 exponent */
} POT_Entry_Source;
/* Power of ten tables used by the floating point I/O routines.
* The POT_Table? arrays are built from the POT_Table?_Source arrays at
* runtime by POT_Table_Init().
*/
/* This table contains the powers of ten raised to negative powers of two:
*
* entry[12-n] = 10 ** (-2 ** n) for 0 <= n <= 12.
* entry[13] = 1.0
*/
static /*@only@*/ POT_Entry *POT_TableN;
static POT_Entry_Source POT_TableN_Source[] = {
{{0xe3,0x2d,0xde,0x9f,0xce,0xd2,0xc8,0x04,0xdd,0xa6},0x4ad8}, /* 1e-4096 */
{{0x25,0x49,0xe4,0x2d,0x36,0x34,0x4f,0x53,0xae,0xce},0x656b}, /* 1e-2048 */
{{0xa6,0x87,0xbd,0xc0,0x57,0xda,0xa5,0x82,0xa6,0xa2},0x72b5}, /* 1e-1024 */
{{0x33,0x71,0x1c,0xd2,0x23,0xdb,0x32,0xee,0x49,0x90},0x795a}, /* 1e-512 */
{{0x91,0xfa,0x39,0x19,0x7a,0x63,0x25,0x43,0x31,0xc0},0x7cac}, /* 1e-256 */
{{0x7d,0xac,0xa0,0xe4,0xbc,0x64,0x7c,0x46,0xd0,0xdd},0x7e55}, /* 1e-128 */
{{0x24,0x3f,0xa5,0xe9,0x39,0xa5,0x27,0xea,0x7f,0xa8},0x7f2a}, /* 1e-64 */
{{0xde,0x67,0xba,0x94,0x39,0x45,0xad,0x1e,0xb1,0xcf},0x7f94}, /* 1e-32 */
{{0x2f,0x4c,0x5b,0xe1,0x4d,0xc4,0xbe,0x94,0x95,0xe6},0x7fc9}, /* 1e-16 */
{{0xc2,0xfd,0xfc,0xce,0x61,0x84,0x11,0x77,0xcc,0xab},0x7fe4}, /* 1e-8 */
{{0xc3,0xd3,0x2b,0x65,0x19,0xe2,0x58,0x17,0xb7,0xd1},0x7ff1}, /* 1e-4 */
{{0x71,0x3d,0x0a,0xd7,0xa3,0x70,0x3d,0x0a,0xd7,0xa3},0x7ff8}, /* 1e-2 */
{{0xcd,0xcc,0xcc,0xcc,0xcc,0xcc,0xcc,0xcc,0xcc,0xcc},0x7ffb}, /* 1e-1 */
{{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x80},0x7fff}, /* 1e-0 */
};
/* This table contains the powers of ten raised to positive powers of two:
*
* entry[12-n] = 10 ** (2 ** n) for 0 <= n <= 12.
* entry[13] = 1.0
* entry[-1] = entry[0];
*
* There is a -1 entry since it is possible for the algorithm to back up
* before the table. This -1 entry is created at runtime by duplicating the
* 0 entry.
*/
static /*@only@*/ POT_Entry *POT_TableP;
static POT_Entry_Source POT_TableP_Source[] = {
{{0x4c,0xc9,0x9a,0x97,0x20,0x8a,0x02,0x52,0x60,0xc4},0xb525}, /* 1e+4096 */
{{0x4d,0xa7,0xe4,0x5d,0x3d,0xc5,0x5d,0x3b,0x8b,0x9e},0x9a92}, /* 1e+2048 */
{{0x0d,0x65,0x17,0x0c,0x75,0x81,0x86,0x75,0x76,0xc9},0x8d48}, /* 1e+1024 */
{{0x65,0xcc,0xc6,0x91,0x0e,0xa6,0xae,0xa0,0x19,0xe3},0x86a3}, /* 1e+512 */
{{0xbc,0xdd,0x8d,0xde,0xf9,0x9d,0xfb,0xeb,0x7e,0xaa},0x8351}, /* 1e+256 */
{{0x6f,0xc6,0xdf,0x8c,0xe9,0x80,0xc9,0x47,0xba,0x93},0x81a8}, /* 1e+128 */
{{0xbf,0x3c,0xd5,0xa6,0xcf,0xff,0x49,0x1f,0x78,0xc2},0x80d3}, /* 1e+64 */
{{0x20,0xf0,0x9d,0xb5,0x70,0x2b,0xa8,0xad,0xc5,0x9d},0x8069}, /* 1e+32 */
{{0x00,0x00,0x00,0x00,0x00,0x04,0xbf,0xc9,0x1b,0x8e},0x8034}, /* 1e+16 */
{{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x20,0xbc,0xbe},0x8019}, /* 1e+8 */
{{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x40,0x9c},0x800c}, /* 1e+4 */
{{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xc8},0x8005}, /* 1e+2 */
{{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xa0},0x8002}, /* 1e+1 */
{{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x80},0x7fff}, /* 1e+0 */
};
static void
POT_Table_Init_Entry(/*@out@*/ POT_Entry *e, POT_Entry_Source *s, int dec_exp)
{
/* Save decimal exponent */
e->dec_exponent = dec_exp;
/* Initialize mantissa */
e->f.mantissa = BitVector_Create(MANT_BITS, FALSE);
BitVector_Block_Store(e->f.mantissa, s->mantissa, MANT_BYTES);
/* Initialize exponent */
e->f.exponent = s->exponent;
/* Set sign to 0 (positive) */
e->f.sign = 0;
/* Clear flags */
e->f.flags = 0;
}
/*@-compdef@*/
void
yasm_floatnum_initialize(void)
/*@globals undef POT_TableN, undef POT_TableP, POT_TableP_Source,
POT_TableN_Source @*/
{
int dec_exp = 1;
int i;
/* Allocate space for two POT tables */
POT_TableN = yasm_xmalloc(14*sizeof(POT_Entry));
POT_TableP = yasm_xmalloc(15*sizeof(POT_Entry)); /* note 1 extra for -1 */
/* Initialize entry[0..12] */
for (i=12; i>=0; i--) {
POT_Table_Init_Entry(&POT_TableN[i], &POT_TableN_Source[i], 0-dec_exp);
POT_Table_Init_Entry(&POT_TableP[i+1], &POT_TableP_Source[i], dec_exp);
dec_exp *= 2; /* Update decimal exponent */
}
/* Initialize entry[13] */
POT_Table_Init_Entry(&POT_TableN[13], &POT_TableN_Source[13], 0);
POT_Table_Init_Entry(&POT_TableP[14], &POT_TableP_Source[13], 0);
/* Initialize entry[-1] for POT_TableP */
POT_Table_Init_Entry(&POT_TableP[0], &POT_TableP_Source[0], 4096);
/* Offset POT_TableP so that [0] becomes [-1] */
POT_TableP++;
}
/*@=compdef@*/
/*@-globstate@*/
void
yasm_floatnum_cleanup(void)
{
int i;
/* Un-offset POT_TableP */
POT_TableP--;
for (i=0; i<14; i++) {
BitVector_Destroy(POT_TableN[i].f.mantissa);
BitVector_Destroy(POT_TableP[i].f.mantissa);
}
BitVector_Destroy(POT_TableP[14].f.mantissa);
yasm_xfree(POT_TableN);
yasm_xfree(POT_TableP);
}
/*@=globstate@*/
static void
floatnum_normalize(yasm_floatnum *flt)
{
long norm_amt;
if (BitVector_is_empty(flt->mantissa)) {
flt->exponent = 0;
return;
}
/* Look for the highest set bit, shift to make it the MSB, and adjust
* exponent. Don't let exponent go negative. */
norm_amt = (MANT_BITS-1)-Set_Max(flt->mantissa);
if (norm_amt > (long)flt->exponent)
norm_amt = (long)flt->exponent;
BitVector_Move_Left(flt->mantissa, (N_int)norm_amt);
flt->exponent -= (unsigned short)norm_amt;
}
/* acc *= op */
static void
floatnum_mul(yasm_floatnum *acc, const yasm_floatnum *op)
{
long expon;
wordptr product, op1, op2;
long norm_amt;
/* Compute the new sign */
acc->sign ^= op->sign;
/* Check for multiply by 0 */
if (BitVector_is_empty(acc->mantissa) || BitVector_is_empty(op->mantissa)) {
BitVector_Empty(acc->mantissa);
acc->exponent = EXP_ZERO;
return;
}
/* Add exponents, checking for overflow/underflow. */
expon = (((int)acc->exponent)-EXP_BIAS) + (((int)op->exponent)-EXP_BIAS);
expon += EXP_BIAS;
if (expon > EXP_MAX) {
/* Overflow; return infinity. */
BitVector_Empty(acc->mantissa);
acc->exponent = EXP_INF;
return;
} else if (expon < EXP_MIN) {
/* Underflow; return zero. */
BitVector_Empty(acc->mantissa);
acc->exponent = EXP_ZERO;
return;
}
/* Add one to the final exponent, as the multiply shifts one extra time. */
acc->exponent = (unsigned short)(expon+1);
/* Allocate space for the multiply result */
product = BitVector_Create((N_int)((MANT_BITS+1)*2), FALSE);
/* Allocate 1-bit-longer fields to force the operands to be unsigned */
op1 = BitVector_Create((N_int)(MANT_BITS+1), FALSE);
op2 = BitVector_Create((N_int)(MANT_BITS+1), FALSE);
/* Make the operands unsigned after copying from original operands */
BitVector_Copy(op1, acc->mantissa);
BitVector_MSB(op1, 0);
BitVector_Copy(op2, op->mantissa);
BitVector_MSB(op2, 0);
/* Compute the product of the mantissas */
BitVector_Multiply(product, op1, op2);
/* Normalize the product. Note: we know the product is non-zero because
* both of the original operands were non-zero.
*
* Look for the highest set bit, shift to make it the MSB, and adjust
* exponent. Don't let exponent go negative.
*/
norm_amt = (MANT_BITS*2-1)-Set_Max(product);
if (norm_amt > (long)acc->exponent)
norm_amt = (long)acc->exponent;
BitVector_Move_Left(product, (N_int)norm_amt);
acc->exponent -= (unsigned short)norm_amt;
/* Store the highest bits of the result */
BitVector_Interval_Copy(acc->mantissa, product, 0, MANT_BITS, MANT_BITS);
/* Free allocated variables */
BitVector_Destroy(product);
BitVector_Destroy(op1);
BitVector_Destroy(op2);
}
yasm_floatnum *
yasm_floatnum_create(const char *str)
{
yasm_floatnum *flt;
int dec_exponent, dec_exp_add; /* decimal (powers of 10) exponent */
int POT_index;
wordptr operand[2];
int sig_digits;
int decimal_pt;
boolean carry;
flt = yasm_xmalloc(sizeof(yasm_floatnum));
flt->mantissa = BitVector_Create(MANT_BITS, TRUE);
/* allocate and initialize calculation variables */
operand[0] = BitVector_Create(MANT_BITS, TRUE);
operand[1] = BitVector_Create(MANT_BITS, TRUE);
dec_exponent = 0;
sig_digits = 0;
decimal_pt = 1;
/* set initial flags to 0 */
flt->flags = 0;
/* check for + or - character and skip */
if (*str == '-') {
flt->sign = 1;
str++;
} else if (*str == '+') {
flt->sign = 0;
str++;
} else
flt->sign = 0;
/* eliminate any leading zeros (which do not count as significant digits) */
while (*str == '0')
str++;
/* When we reach the end of the leading zeros, first check for a decimal
* point. If the number is of the form "0---0.0000" we need to get rid
* of the zeros after the decimal point and not count them as significant
* digits.
*/
if (*str == '.') {
str++;
while (*str == '0') {
str++;
dec_exponent--;
}
} else {
/* The number is of the form "yyy.xxxx" (where y <> 0). */
while (isdigit(*str)) {
/* See if we've processed more than the max significant digits: */
if (sig_digits < MANT_SIGDIGITS) {
/* Multiply mantissa by 10 [x = (x<<1)+(x<<3)] */
BitVector_shift_left(flt->mantissa, 0);
BitVector_Copy(operand[0], flt->mantissa);
BitVector_Move_Left(flt->mantissa, 2);
carry = 0;
BitVector_add(operand[1], operand[0], flt->mantissa, &carry);
/* Add in current digit */
BitVector_Empty(operand[0]);
BitVector_Chunk_Store(operand[0], 4, 0, (N_long)(*str-'0'));
carry = 0;
BitVector_add(flt->mantissa, operand[1], operand[0], &carry);
} else {
/* Can't integrate more digits with mantissa, so instead just
* raise by a power of ten.
*/
dec_exponent++;
}
sig_digits++;
str++;
}
if (*str == '.')
str++;
else
decimal_pt = 0;
}
if (decimal_pt) {
/* Process the digits to the right of the decimal point. */
while (isdigit(*str)) {
/* See if we've processed more than 19 significant digits: */
if (sig_digits < 19) {
/* Raise by a power of ten */
dec_exponent--;
/* Multiply mantissa by 10 [x = (x<<1)+(x<<3)] */
BitVector_shift_left(flt->mantissa, 0);
BitVector_Copy(operand[0], flt->mantissa);
BitVector_Move_Left(flt->mantissa, 2);
carry = 0;
BitVector_add(operand[1], operand[0], flt->mantissa, &carry);
/* Add in current digit */
BitVector_Empty(operand[0]);
BitVector_Chunk_Store(operand[0], 4, 0, (N_long)(*str-'0'));
carry = 0;
BitVector_add(flt->mantissa, operand[1], operand[0], &carry);
}
sig_digits++;
str++;
}
}
if (*str == 'e' || *str == 'E') {
str++;
/* We just saw the "E" character, now read in the exponent value and
* add it into dec_exponent.
*/
dec_exp_add = 0;
sscanf(str, "%d", &dec_exp_add);
dec_exponent += dec_exp_add;
}
/* Free calculation variables. */
BitVector_Destroy(operand[1]);
BitVector_Destroy(operand[0]);
/* Normalize the number, checking for 0 first. */
if (BitVector_is_empty(flt->mantissa)) {
/* Mantissa is 0, zero exponent too. */
flt->exponent = 0;
/* Set zero flag so output functions don't see 0 value as underflow. */
flt->flags |= FLAG_ISZERO;
/* Return 0 value. */
return flt;
}
/* Exponent if already norm. */
flt->exponent = (unsigned short)(0x7FFF+(MANT_BITS-1));
floatnum_normalize(flt);
/* The number is normalized. Now multiply by 10 the number of times
* specified in DecExponent. This uses the power of ten tables to speed
* up this operation (and make it more accurate).
*/
if (dec_exponent > 0) {
POT_index = 0;
/* Until we hit 1.0 or finish exponent or overflow */
while ((POT_index < 14) && (dec_exponent != 0) &&
(flt->exponent != EXP_INF)) {
/* Find the first power of ten in the table which is just less than
* the exponent.
*/
while (dec_exponent < POT_TableP[POT_index].dec_exponent)
POT_index++;
if (POT_index < 14) {
/* Subtract out what we're multiplying in from exponent */
dec_exponent -= POT_TableP[POT_index].dec_exponent;
/* Multiply by current power of 10 */
floatnum_mul(flt, &POT_TableP[POT_index].f);
}
}
} else if (dec_exponent < 0) {
POT_index = 0;
/* Until we hit 1.0 or finish exponent or underflow */
while ((POT_index < 14) && (dec_exponent != 0) &&
(flt->exponent != EXP_ZERO)) {
/* Find the first power of ten in the table which is just less than
* the exponent.
*/
while (dec_exponent > POT_TableN[POT_index].dec_exponent)
POT_index++;
if (POT_index < 14) {
/* Subtract out what we're multiplying in from exponent */
dec_exponent -= POT_TableN[POT_index].dec_exponent;
/* Multiply by current power of 10 */
floatnum_mul(flt, &POT_TableN[POT_index].f);
}
}
}
/* Round the result. (Don't round underflow or overflow). Also don't
* increment if this would cause the mantissa to wrap.
*/
if ((flt->exponent != EXP_INF) && (flt->exponent != EXP_ZERO) &&
!BitVector_is_full(flt->mantissa))
BitVector_increment(flt->mantissa);
return flt;
}
yasm_floatnum *
yasm_floatnum_copy(const yasm_floatnum *flt)
{
yasm_floatnum *f = yasm_xmalloc(sizeof(yasm_floatnum));
f->mantissa = BitVector_Clone(flt->mantissa);
f->exponent = flt->exponent;
f->sign = flt->sign;
f->flags = flt->flags;
return f;
}
void
yasm_floatnum_destroy(yasm_floatnum *flt)
{
BitVector_Destroy(flt->mantissa);
yasm_xfree(flt);
}
int
yasm_floatnum_calc(yasm_floatnum *acc, yasm_expr_op op,
/*@unused@*/ yasm_floatnum *operand)
{
if (op != YASM_EXPR_NEG) {
yasm_error_set(YASM_ERROR_FLOATING_POINT,
N_("Unsupported floating-point arithmetic operation"));
return 1;
}
acc->sign ^= 1;
return 0;
}
int
yasm_floatnum_get_int(const yasm_floatnum *flt, unsigned long *ret_val)
{
unsigned char t[4];
if (yasm_floatnum_get_sized(flt, t, 4, 32, 0, 0, 0)) {
*ret_val = 0xDEADBEEFUL; /* Obviously incorrect return value */
return 1;
}
YASM_LOAD_32_L(*ret_val, &t[0]);
return 0;
}
/* Function used by conversion routines to actually perform the conversion.
*
* ptr -> the array to return the little-endian floating point value into.
* flt -> the floating point value to convert.
* byte_size -> the size in bytes of the output format.
* mant_bits -> the size in bits of the output mantissa.
* implicit1 -> does the output format have an implicit 1? 1=yes, 0=no.
* exp_bits -> the size in bits of the output exponent.
*
* Returns 0 on success, 1 if overflow, -1 if underflow.
*/
static int
floatnum_get_common(const yasm_floatnum *flt, /*@out@*/ unsigned char *ptr,
N_int byte_size, N_int mant_bits, int implicit1,
N_int exp_bits)
{
long exponent = (long)flt->exponent;
wordptr output;
charptr buf;
unsigned int len;
unsigned int overflow = 0, underflow = 0;
int retval = 0;
long exp_bias = (1<<(exp_bits-1))-1;
long exp_inf = (1<<exp_bits)-1;
output = BitVector_Create(byte_size*8, TRUE);
/* copy mantissa */
BitVector_Interval_Copy(output, flt->mantissa, 0,
(N_int)((MANT_BITS-implicit1)-mant_bits),
mant_bits);
/* round mantissa */
if (BitVector_bit_test(flt->mantissa, (MANT_BITS-implicit1)-(mant_bits+1)))
BitVector_increment(output);
if (BitVector_bit_test(output, mant_bits)) {
/* overflowed, so zero mantissa (and set explicit bit if necessary) */
BitVector_Empty(output);
BitVector_Bit_Copy(output, mant_bits-1, !implicit1);
/* and up the exponent (checking for overflow) */
if (exponent+1 >= EXP_INF)
overflow = 1;
else
exponent++;
}
/* adjust the exponent to the output bias, checking for overflow */
exponent -= EXP_BIAS-exp_bias;
if (exponent >= exp_inf)
overflow = 1;
else if (exponent <= 0)
underflow = 1;
/* underflow and overflow both set!? */
if (underflow && overflow)
yasm_internal_error(N_("Both underflow and overflow set"));
/* check for underflow or overflow and set up appropriate output */
if (underflow) {
BitVector_Empty(output);
exponent = 0;
if (!(flt->flags & FLAG_ISZERO))
retval = -1;
} else if (overflow) {
BitVector_Empty(output);
exponent = exp_inf;
retval = 1;
}
/* move exponent into place */
BitVector_Chunk_Store(output, exp_bits, mant_bits, (N_long)exponent);
/* merge in sign bit */
BitVector_Bit_Copy(output, byte_size*8-1, flt->sign);
/* get little-endian bytes */
buf = BitVector_Block_Read(output, &len);
if (len < byte_size)
yasm_internal_error(
N_("Byte length of BitVector does not match bit length"));
/* copy to output */
memcpy(ptr, buf, byte_size*sizeof(unsigned char));
/* free allocated resources */
yasm_xfree(buf);
BitVector_Destroy(output);
return retval;
}
/* IEEE-754r "half precision" format:
* 16 bits:
* 15 9 Bit 0
* | | |
* seee eemm mmmm mmmm
*
* e = bias 15 exponent
* s = sign bit
* m = mantissa bits, bit 10 is an implied one bit.
*
* IEEE-754 (Intel) "single precision" format:
* 32 bits:
* Bit 31 Bit 22 Bit 0
* | | |
* seeeeeee emmmmmmm mmmmmmmm mmmmmmmm
*
* e = bias 127 exponent
* s = sign bit
* m = mantissa bits, bit 23 is an implied one bit.
*
* IEEE-754 (Intel) "double precision" format:
* 64 bits:
* bit 63 bit 51 bit 0
* | | |
* seeeeeee eeeemmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm
*
* e = bias 1023 exponent.
* s = sign bit.
* m = mantissa bits. Bit 52 is an implied one bit.
*
* IEEE-754 (Intel) "extended precision" format:
* 80 bits:
* bit 79 bit 63 bit 0
* | | |
* seeeeeee eeeeeeee mmmmmmmm m...m m...m m...m m...m m...m
*
* e = bias 16383 exponent
* m = 64 bit mantissa with NO implied bit!
* s = sign (for mantissa)
*/
int
yasm_floatnum_get_sized(const yasm_floatnum *flt, unsigned char *ptr,
size_t destsize, size_t valsize, size_t shift,
int bigendian, int warn)
{
int retval;
if (destsize*8 != valsize || shift>0 || bigendian) {
/* TODO */
yasm_internal_error(N_("unsupported floatnum functionality"));
}
switch (destsize) {
case 2:
retval = floatnum_get_common(flt, ptr, 2, 10, 1, 5);
break;
case 4:
retval = floatnum_get_common(flt, ptr, 4, 23, 1, 8);
break;
case 8:
retval = floatnum_get_common(flt, ptr, 8, 52, 1, 11);
break;
case 10:
retval = floatnum_get_common(flt, ptr, 10, 64, 0, 15);
break;
default:
yasm_internal_error(N_("Invalid float conversion size"));
/*@notreached@*/
return 1;
}
if (warn) {
if (retval < 0)
yasm_warn_set(YASM_WARN_GENERAL,
N_("underflow in floating point expression"));
else if (retval > 0)
yasm_warn_set(YASM_WARN_GENERAL,
N_("overflow in floating point expression"));
}
return retval;
}
/* 1 if the size is valid, 0 if it isn't */
int
yasm_floatnum_check_size(/*@unused@*/ const yasm_floatnum *flt, size_t size)
{
switch (size) {
case 16:
case 32:
case 64:
case 80:
return 1;
default:
return 0;
}
}
void
yasm_floatnum_print(const yasm_floatnum *flt, FILE *f)
{
unsigned char out[10];
unsigned char *str;
int i;
/* Internal format */
str = BitVector_to_Hex(flt->mantissa);
fprintf(f, "%c %s *2^%04x\n", flt->sign?'-':'+', (char *)str,
flt->exponent);
yasm_xfree(str);
/* 32-bit (single precision) format */
fprintf(f, "32-bit: %d: ",
yasm_floatnum_get_sized(flt, out, 4, 32, 0, 0, 0));
for (i=0; i<4; i++)
fprintf(f, "%02x ", out[i]);
fprintf(f, "\n");
/* 64-bit (double precision) format */
fprintf(f, "64-bit: %d: ",
yasm_floatnum_get_sized(flt, out, 8, 64, 0, 0, 0));
for (i=0; i<8; i++)
fprintf(f, "%02x ", out[i]);
fprintf(f, "\n");
/* 80-bit (extended precision) format */
fprintf(f, "80-bit: %d: ",
yasm_floatnum_get_sized(flt, out, 10, 80, 0, 0, 0));
for (i=0; i<10; i++)
fprintf(f, "%02x ", out[i]);
fprintf(f, "\n");
}
|