1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
|
/*
* Copyright 2002 Adrian Thurston <thurston@cs.queensu.ca>
*/
/* This file is part of Ragel.
*
* Ragel is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Ragel is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Ragel; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <string.h>
#include <assert.h>
#include "fsmgraph.h"
#include <iostream>
using namespace std;
/* Construct a mark index for a specified number of states. Must new up
* an array that is states^2 in size. */
MarkIndex::MarkIndex( int states ) : numStates(states)
{
/* Total pairs is states^2. Actually only use half of these, but we allocate
* them all to make indexing into the array easier. */
int total = states * states;
/* New up chars so that individual DListEl constructors are
* not called. Zero out the mem manually. */
array = new bool[total];
memset( array, 0, sizeof(bool) * total );
}
/* Free the array used to store state pairs. */
MarkIndex::~MarkIndex()
{
delete[] array;
}
/* Mark a pair of states. States are specified by their number. The
* marked states are moved from the unmarked list to the marked list. */
void MarkIndex::markPair(int state1, int state2)
{
int pos = ( state1 >= state2 ) ?
( state1 * numStates ) + state2 :
( state2 * numStates ) + state1;
array[pos] = true;
}
/* Returns true if the pair of states are marked. Returns false otherwise.
* Ordering of states given does not matter. */
bool MarkIndex::isPairMarked(int state1, int state2)
{
int pos = ( state1 >= state2 ) ?
( state1 * numStates ) + state2 :
( state2 * numStates ) + state1;
return array[pos];
}
/* Create a new fsm state. State has not out transitions or in transitions, not
* out out transition data and not number. */
StateAp::StateAp()
:
/* No out or in transitions. */
outList(),
inList(),
/* No entry points, or epsilon trans. */
entryIds(),
epsilonTrans(),
/* Conditions. */
stateCondList(),
/* No transitions in from other states. */
foreignInTrans(0),
/* Only used during merging. Normally null. */
stateDictEl(0),
eptVect(0),
/* No state identification bits. */
stateBits(0),
/* No Priority data. */
outPriorTable(),
/* No Action data. */
toStateActionTable(),
fromStateActionTable(),
outActionTable(),
outCondSet(),
errActionTable(),
eofActionTable()
{
}
/* Copy everything except actual the transitions. That is left up to the
* FsmAp copy constructor. */
StateAp::StateAp(const StateAp &other)
:
/* All lists are cleared. They will be filled in when the
* individual transitions are duplicated and attached. */
outList(),
inList(),
/* Duplicate the entry id set and epsilon transitions. These
* are sets of integers and as such need no fixing. */
entryIds(other.entryIds),
epsilonTrans(other.epsilonTrans),
/* Copy in the elements of the conditions. */
stateCondList( other.stateCondList ),
/* No transitions in from other states. */
foreignInTrans(0),
/* This is only used during merging. Normally null. */
stateDictEl(0),
eptVect(0),
/* Fsm state data. */
stateBits(other.stateBits),
/* Copy in priority data. */
outPriorTable(other.outPriorTable),
/* Copy in action data. */
toStateActionTable(other.toStateActionTable),
fromStateActionTable(other.fromStateActionTable),
outActionTable(other.outActionTable),
outCondSet(other.outCondSet),
errActionTable(other.errActionTable),
eofActionTable(other.eofActionTable)
{
/* Duplicate all the transitions. */
for ( TransList::Iter trans = other.outList; trans.lte(); trans++ ) {
/* Dupicate and store the orginal target in the transition. This will
* be corrected once all the states have been created. */
TransAp *newTrans = new TransAp(*trans);
newTrans->toState = trans->toState;
outList.append( newTrans );
}
}
/* If there is a state dict element, then delete it. Everything else is left
* up to the FsmGraph destructor. */
StateAp::~StateAp()
{
if ( stateDictEl != 0 )
delete stateDictEl;
}
/* Compare two states using pointers to the states. With the approximate
* compare the idea is that if the compare finds them the same, they can
* immediately be merged. */
int ApproxCompare::compare( const StateAp *state1 , const StateAp *state2 )
{
int compareRes;
/* Test final state status. */
if ( (state1->stateBits & SB_ISFINAL) && !(state2->stateBits & SB_ISFINAL) )
return -1;
else if ( !(state1->stateBits & SB_ISFINAL) && (state2->stateBits & SB_ISFINAL) )
return 1;
/* Test epsilon transition sets. */
compareRes = CmpEpsilonTrans::compare( state1->epsilonTrans,
state2->epsilonTrans );
if ( compareRes != 0 )
return compareRes;
/* Compare the out transitions. */
compareRes = FsmAp::compareStateData( state1, state2 );
if ( compareRes != 0 )
return compareRes;
/* Use a pair iterator to get the transition pairs. */
PairIter<TransAp> outPair( state1->outList.head, state2->outList.head );
for ( ; !outPair.end(); outPair++ ) {
switch ( outPair.userState ) {
case RangeInS1:
compareRes = FsmAp::compareFullPtr( outPair.s1Tel.trans, 0 );
if ( compareRes != 0 )
return compareRes;
break;
case RangeInS2:
compareRes = FsmAp::compareFullPtr( 0, outPair.s2Tel.trans );
if ( compareRes != 0 )
return compareRes;
break;
case RangeOverlap:
compareRes = FsmAp::compareFullPtr(
outPair.s1Tel.trans, outPair.s2Tel.trans );
if ( compareRes != 0 )
return compareRes;
break;
case BreakS1:
case BreakS2:
break;
}
}
/* Got through the entire state comparison, deem them equal. */
return 0;
}
/* Compare class for the sort that does the intial partition of compaction. */
int InitPartitionCompare::compare( const StateAp *state1 , const StateAp *state2 )
{
int compareRes;
/* Test final state status. */
if ( (state1->stateBits & SB_ISFINAL) && !(state2->stateBits & SB_ISFINAL) )
return -1;
else if ( !(state1->stateBits & SB_ISFINAL) && (state2->stateBits & SB_ISFINAL) )
return 1;
/* Test epsilon transition sets. */
compareRes = CmpEpsilonTrans::compare( state1->epsilonTrans,
state2->epsilonTrans );
if ( compareRes != 0 )
return compareRes;
/* Compare the out transitions. */
compareRes = FsmAp::compareStateData( state1, state2 );
if ( compareRes != 0 )
return compareRes;
/* Use a pair iterator to test the condition pairs. */
PairIter<StateCond> condPair( state1->stateCondList.head, state2->stateCondList.head );
for ( ; !condPair.end(); condPair++ ) {
switch ( condPair.userState ) {
case RangeInS1:
return 1;
case RangeInS2:
return -1;
case RangeOverlap: {
CondSpace *condSpace1 = condPair.s1Tel.trans->condSpace;
CondSpace *condSpace2 = condPair.s2Tel.trans->condSpace;
if ( condSpace1 < condSpace2 )
return -1;
else if ( condSpace1 > condSpace2 )
return 1;
break;
}
case BreakS1:
case BreakS2:
break;
}
}
/* Use a pair iterator to test the transition pairs. */
PairIter<TransAp> outPair( state1->outList.head, state2->outList.head );
for ( ; !outPair.end(); outPair++ ) {
switch ( outPair.userState ) {
case RangeInS1:
compareRes = FsmAp::compareDataPtr( outPair.s1Tel.trans, 0 );
if ( compareRes != 0 )
return compareRes;
break;
case RangeInS2:
compareRes = FsmAp::compareDataPtr( 0, outPair.s2Tel.trans );
if ( compareRes != 0 )
return compareRes;
break;
case RangeOverlap:
compareRes = FsmAp::compareDataPtr(
outPair.s1Tel.trans, outPair.s2Tel.trans );
if ( compareRes != 0 )
return compareRes;
break;
case BreakS1:
case BreakS2:
break;
}
}
return 0;
}
/* Compare class for the sort that does the partitioning. */
int PartitionCompare::compare( const StateAp *state1, const StateAp *state2 )
{
int compareRes;
/* Use a pair iterator to get the transition pairs. */
PairIter<TransAp> outPair( state1->outList.head, state2->outList.head );
for ( ; !outPair.end(); outPair++ ) {
switch ( outPair.userState ) {
case RangeInS1:
compareRes = FsmAp::comparePartPtr( outPair.s1Tel.trans, 0 );
if ( compareRes != 0 )
return compareRes;
break;
case RangeInS2:
compareRes = FsmAp::comparePartPtr( 0, outPair.s2Tel.trans );
if ( compareRes != 0 )
return compareRes;
break;
case RangeOverlap:
compareRes = FsmAp::comparePartPtr(
outPair.s1Tel.trans, outPair.s2Tel.trans );
if ( compareRes != 0 )
return compareRes;
break;
case BreakS1:
case BreakS2:
break;
}
}
return 0;
}
/* Compare class for the sort that does the partitioning. */
bool MarkCompare::shouldMark( MarkIndex &markIndex, const StateAp *state1,
const StateAp *state2 )
{
/* Use a pair iterator to get the transition pairs. */
PairIter<TransAp> outPair( state1->outList.head, state2->outList.head );
for ( ; !outPair.end(); outPair++ ) {
switch ( outPair.userState ) {
case RangeInS1:
if ( FsmAp::shouldMarkPtr( markIndex, outPair.s1Tel.trans, 0 ) )
return true;
break;
case RangeInS2:
if ( FsmAp::shouldMarkPtr( markIndex, 0, outPair.s2Tel.trans ) )
return true;
break;
case RangeOverlap:
if ( FsmAp::shouldMarkPtr( markIndex,
outPair.s1Tel.trans, outPair.s2Tel.trans ) )
return true;
break;
case BreakS1:
case BreakS2:
break;
}
}
return false;
}
/*
* Transition Comparison.
*/
/* Compare target partitions. Either pointer may be null. */
int FsmAp::comparePartPtr( TransAp *trans1, TransAp *trans2 )
{
if ( trans1 != 0 ) {
/* If trans1 is set then so should trans2. The initial partitioning
* guarantees this for us. */
if ( trans1->toState == 0 && trans2->toState != 0 )
return -1;
else if ( trans1->toState != 0 && trans2->toState == 0 )
return 1;
else if ( trans1->toState != 0 ) {
/* Both of targets are set. */
return CmpOrd< MinPartition* >::compare(
trans1->toState->alg.partition, trans2->toState->alg.partition );
}
}
return 0;
}
/* Compares two transition pointers according to priority and functions.
* Either pointer may be null. Does not consider to state or from state. */
int FsmAp::compareDataPtr( TransAp *trans1, TransAp *trans2 )
{
if ( trans1 == 0 && trans2 != 0 )
return -1;
else if ( trans1 != 0 && trans2 == 0 )
return 1;
else if ( trans1 != 0 ) {
/* Both of the transition pointers are set. */
int compareRes = compareTransData( trans1, trans2 );
if ( compareRes != 0 )
return compareRes;
}
return 0;
}
/* Compares two transitions according to target state, priority and functions.
* Does not consider from state. Either of the pointers may be null. */
int FsmAp::compareFullPtr( TransAp *trans1, TransAp *trans2 )
{
if ( (trans1 != 0) ^ (trans2 != 0) ) {
/* Exactly one of the transitions is set. */
if ( trans1 != 0 )
return -1;
else
return 1;
}
else if ( trans1 != 0 ) {
/* Both of the transition pointers are set. Test target state,
* priority and funcs. */
if ( trans1->toState < trans2->toState )
return -1;
else if ( trans1->toState > trans2->toState )
return 1;
else if ( trans1->toState != 0 ) {
/* Test transition data. */
int compareRes = compareTransData( trans1, trans2 );
if ( compareRes != 0 )
return compareRes;
}
}
return 0;
}
bool FsmAp::shouldMarkPtr( MarkIndex &markIndex, TransAp *trans1,
TransAp *trans2 )
{
if ( (trans1 != 0) ^ (trans2 != 0) ) {
/* Exactly one of the transitions is set. The initial mark round
* should rule out this case. */
assert( false );
}
else if ( trans1 != 0 ) {
/* Both of the transitions are set. If the target pair is marked, then
* the pair we are considering gets marked. */
return markIndex.isPairMarked( trans1->toState->alg.stateNum,
trans2->toState->alg.stateNum );
}
/* Neither of the transitiosn are set. */
return false;
}
|