aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/tools/python3/src/Modules/_sha3/sha3.c
blob: e2d3fd7b8ad855fede44e933ad030a31f9bbc6e9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
// sha3.c
// 19-Nov-11  Markku-Juhani O. Saarinen <mjos@iki.fi>

// Revised 07-Aug-15 to match with official release of FIPS PUB 202 "SHA3"
// Revised 03-Sep-15 for portability + OpenSSL - style API

#include "sha3.h"

// update the state with given number of rounds

static void sha3_keccakf(uint64_t st[25])
{
    // constants
    const uint64_t keccakf_rndc[24] = {
        0x0000000000000001, 0x0000000000008082, 0x800000000000808a,
        0x8000000080008000, 0x000000000000808b, 0x0000000080000001,
        0x8000000080008081, 0x8000000000008009, 0x000000000000008a,
        0x0000000000000088, 0x0000000080008009, 0x000000008000000a,
        0x000000008000808b, 0x800000000000008b, 0x8000000000008089,
        0x8000000000008003, 0x8000000000008002, 0x8000000000000080,
        0x000000000000800a, 0x800000008000000a, 0x8000000080008081,
        0x8000000000008080, 0x0000000080000001, 0x8000000080008008
    };
    const int keccakf_rotc[24] = {
        1,  3,  6,  10, 15, 21, 28, 36, 45, 55, 2,  14,
        27, 41, 56, 8,  25, 43, 62, 18, 39, 61, 20, 44
    };
    const int keccakf_piln[24] = {
        10, 7,  11, 17, 18, 3, 5,  16, 8,  21, 24, 4,
        15, 23, 19, 13, 12, 2, 20, 14, 22, 9,  6,  1
    };

    // variables
    int i, j, r;
    uint64_t t, bc[5];

#if __BYTE_ORDER__ != __ORDER_LITTLE_ENDIAN__
    uint8_t *v;

    // endianess conversion. this is redundant on little-endian targets
    for (i = 0; i < 25; i++) {
        v = (uint8_t *) &st[i];
        st[i] = ((uint64_t) v[0])     | (((uint64_t) v[1]) << 8) |
            (((uint64_t) v[2]) << 16) | (((uint64_t) v[3]) << 24) |
            (((uint64_t) v[4]) << 32) | (((uint64_t) v[5]) << 40) |
            (((uint64_t) v[6]) << 48) | (((uint64_t) v[7]) << 56);
    }
#endif

    // actual iteration
    for (r = 0; r < KECCAKF_ROUNDS; r++) {

        // Theta
        for (i = 0; i < 5; i++)
            bc[i] = st[i] ^ st[i + 5] ^ st[i + 10] ^ st[i + 15] ^ st[i + 20];

        for (i = 0; i < 5; i++) {
            t = bc[(i + 4) % 5] ^ ROTL64(bc[(i + 1) % 5], 1);
            for (j = 0; j < 25; j += 5)
                st[j + i] ^= t;
        }

        // Rho Pi
        t = st[1];
        for (i = 0; i < 24; i++) {
            j = keccakf_piln[i];
            bc[0] = st[j];
            st[j] = ROTL64(t, keccakf_rotc[i]);
            t = bc[0];
        }

        //  Chi
        for (j = 0; j < 25; j += 5) {
            for (i = 0; i < 5; i++)
                bc[i] = st[j + i];
            for (i = 0; i < 5; i++)
                st[j + i] ^= (~bc[(i + 1) % 5]) & bc[(i + 2) % 5];
        }

        //  Iota
        st[0] ^= keccakf_rndc[r];
    }

#if __BYTE_ORDER__ != __ORDER_LITTLE_ENDIAN__
    // endianess conversion. this is redundant on little-endian targets
    for (i = 0; i < 25; i++) {
        v = (uint8_t *) &st[i];
        t = st[i];
        v[0] = t & 0xFF;
        v[1] = (t >> 8) & 0xFF;
        v[2] = (t >> 16) & 0xFF;
        v[3] = (t >> 24) & 0xFF;
        v[4] = (t >> 32) & 0xFF;
        v[5] = (t >> 40) & 0xFF;
        v[6] = (t >> 48) & 0xFF;
        v[7] = (t >> 56) & 0xFF;
    }
#endif
}

// Initialize the context for SHA3

static int sha3_init(sha3_ctx_t *c, int mdlen)
{
    int i;

    for (i = 0; i < 25; i++)
        c->st.q[i] = 0;
    c->mdlen = mdlen;
    c->rsiz = 200 - 2 * mdlen;
    c->pt = 0;

    return 1;
}

// update state with more data

static int sha3_update(sha3_ctx_t *c, const void *data, size_t len)
{
    size_t i;
    int j;

    j = c->pt;
    for (i = 0; i < len; i++) {
        c->st.b[j++] ^= ((const uint8_t *) data)[i];
        if (j >= c->rsiz) {
            sha3_keccakf(c->st.q);
            j = 0;
        }
    }
    c->pt = j;

    return 1;
}

// finalize and output a hash

static int sha3_final(void *md, sha3_ctx_t *c)
{
    int i;

    c->st.b[c->pt] ^= 0x06;
    c->st.b[c->rsiz - 1] ^= 0x80;
    sha3_keccakf(c->st.q);

    for (i = 0; i < c->mdlen; i++) {
        ((uint8_t *) md)[i] = c->st.b[i];
    }

    return 1;
}

#if 0
// compute a SHA-3 hash (md) of given byte length from "in"

void *sha3(const void *in, size_t inlen, void *md, int mdlen)
{
    sha3_ctx_t sha3;

    sha3_init(&sha3, mdlen);
    sha3_update(&sha3, in, inlen);
    sha3_final(md, &sha3);

    return md;
}
#endif

// SHAKE128 and SHAKE256 extensible-output functionality

static void shake_xof(sha3_ctx_t *c)
{
    c->st.b[c->pt] ^= 0x1F;
    c->st.b[c->rsiz - 1] ^= 0x80;
    sha3_keccakf(c->st.q);
    c->pt = 0;
}

static void shake_out(sha3_ctx_t *c, void *out, size_t len)
{
    size_t i;
    int j;

    j = c->pt;
    for (i = 0; i < len; i++) {
        if (j >= c->rsiz) {
            sha3_keccakf(c->st.q);
            j = 0;
        }
        ((uint8_t *) out)[i] = c->st.b[j++];
    }
    c->pt = j;
}