1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
|
"""
The typing module: Support for gradual typing as defined by PEP 484.
At large scale, the structure of the module is following:
* Imports and exports, all public names should be explicitly added to __all__.
* Internal helper functions: these should never be used in code outside this module.
* _SpecialForm and its instances (special forms): Any, NoReturn, ClassVar, Union, Optional
* Two classes whose instances can be type arguments in addition to types: ForwardRef and TypeVar
* The core of internal generics API: _GenericAlias and _VariadicGenericAlias, the latter is
currently only used by Tuple and Callable. All subscripted types like X[int], Union[int, str],
etc., are instances of either of these classes.
* The public counterpart of the generics API consists of two classes: Generic and Protocol.
* Public helper functions: get_type_hints, overload, cast, no_type_check,
no_type_check_decorator.
* Generic aliases for collections.abc ABCs and few additional protocols.
* Special types: NewType, NamedTuple, TypedDict.
* Wrapper submodules for re and io related types.
"""
from abc import abstractmethod, ABCMeta
import collections
import collections.abc
import contextlib
import functools
import operator
import re as stdlib_re # Avoid confusion with the re we export.
import sys
import types
from types import WrapperDescriptorType, MethodWrapperType, MethodDescriptorType, GenericAlias
# Please keep __all__ alphabetized within each category.
__all__ = [
# Super-special typing primitives.
'Annotated',
'Any',
'Callable',
'ClassVar',
'Final',
'ForwardRef',
'Generic',
'Literal',
'Optional',
'Protocol',
'Tuple',
'Type',
'TypeVar',
'Union',
# ABCs (from collections.abc).
'AbstractSet', # collections.abc.Set.
'ByteString',
'Container',
'ContextManager',
'Hashable',
'ItemsView',
'Iterable',
'Iterator',
'KeysView',
'Mapping',
'MappingView',
'MutableMapping',
'MutableSequence',
'MutableSet',
'Sequence',
'Sized',
'ValuesView',
'Awaitable',
'AsyncIterator',
'AsyncIterable',
'Coroutine',
'Collection',
'AsyncGenerator',
'AsyncContextManager',
# Structural checks, a.k.a. protocols.
'Reversible',
'SupportsAbs',
'SupportsBytes',
'SupportsComplex',
'SupportsFloat',
'SupportsIndex',
'SupportsInt',
'SupportsRound',
# Concrete collection types.
'ChainMap',
'Counter',
'Deque',
'Dict',
'DefaultDict',
'List',
'OrderedDict',
'Set',
'FrozenSet',
'NamedTuple', # Not really a type.
'TypedDict', # Not really a type.
'Generator',
# Other concrete types.
'BinaryIO',
'IO',
'Match',
'Pattern',
'TextIO',
# One-off things.
'AnyStr',
'cast',
'final',
'get_args',
'get_origin',
'get_type_hints',
'NewType',
'no_type_check',
'no_type_check_decorator',
'NoReturn',
'overload',
'runtime_checkable',
'Text',
'TYPE_CHECKING',
]
# The pseudo-submodules 're' and 'io' are part of the public
# namespace, but excluded from __all__ because they might stomp on
# legitimate imports of those modules.
def _type_convert(arg, module=None):
"""For converting None to type(None), and strings to ForwardRef."""
if arg is None:
return type(None)
if isinstance(arg, str):
return ForwardRef(arg, module=module)
return arg
def _type_check(arg, msg, is_argument=True, module=None, *, is_class=False):
"""Check that the argument is a type, and return it (internal helper).
As a special case, accept None and return type(None) instead. Also wrap strings
into ForwardRef instances. Consider several corner cases, for example plain
special forms like Union are not valid, while Union[int, str] is OK, etc.
The msg argument is a human-readable error message, e.g::
"Union[arg, ...]: arg should be a type."
We append the repr() of the actual value (truncated to 100 chars).
"""
invalid_generic_forms = (Generic, Protocol)
if not is_class:
invalid_generic_forms += (ClassVar,)
if is_argument:
invalid_generic_forms += (Final,)
arg = _type_convert(arg, module=module)
if (isinstance(arg, _GenericAlias) and
arg.__origin__ in invalid_generic_forms):
raise TypeError(f"{arg} is not valid as type argument")
if arg in (Any, NoReturn, Final):
return arg
if isinstance(arg, _SpecialForm) or arg in (Generic, Protocol):
raise TypeError(f"Plain {arg} is not valid as type argument")
if isinstance(arg, (type, TypeVar, ForwardRef)):
return arg
if not callable(arg):
raise TypeError(f"{msg} Got {arg!r:.100}.")
return arg
def _type_repr(obj):
"""Return the repr() of an object, special-casing types (internal helper).
If obj is a type, we return a shorter version than the default
type.__repr__, based on the module and qualified name, which is
typically enough to uniquely identify a type. For everything
else, we fall back on repr(obj).
"""
if isinstance(obj, types.GenericAlias):
return repr(obj)
if isinstance(obj, type):
if obj.__module__ == 'builtins':
return obj.__qualname__
return f'{obj.__module__}.{obj.__qualname__}'
if obj is ...:
return('...')
if isinstance(obj, types.FunctionType):
return obj.__name__
return repr(obj)
def _collect_type_vars(types):
"""Collect all type variable contained in types in order of
first appearance (lexicographic order). For example::
_collect_type_vars((T, List[S, T])) == (T, S)
"""
tvars = []
for t in types:
if isinstance(t, TypeVar) and t not in tvars:
tvars.append(t)
if isinstance(t, (_GenericAlias, GenericAlias)):
tvars.extend([t for t in t.__parameters__ if t not in tvars])
return tuple(tvars)
def _check_generic(cls, parameters, elen):
"""Check correct count for parameters of a generic cls (internal helper).
This gives a nice error message in case of count mismatch.
"""
if not elen:
raise TypeError(f"{cls} is not a generic class")
alen = len(parameters)
if alen != elen:
raise TypeError(f"Too {'many' if alen > elen else 'few'} parameters for {cls};"
f" actual {alen}, expected {elen}")
def _deduplicate(params):
# Weed out strict duplicates, preserving the first of each occurrence.
all_params = set(params)
if len(all_params) < len(params):
new_params = []
for t in params:
if t in all_params:
new_params.append(t)
all_params.remove(t)
params = new_params
assert not all_params, all_params
return params
def _remove_dups_flatten(parameters):
"""An internal helper for Union creation and substitution: flatten Unions
among parameters, then remove duplicates.
"""
# Flatten out Union[Union[...], ...].
params = []
for p in parameters:
if isinstance(p, _UnionGenericAlias):
params.extend(p.__args__)
elif isinstance(p, tuple) and len(p) > 0 and p[0] is Union:
params.extend(p[1:])
else:
params.append(p)
return tuple(_deduplicate(params))
def _flatten_literal_params(parameters):
"""An internal helper for Literal creation: flatten Literals among parameters"""
params = []
for p in parameters:
if isinstance(p, _LiteralGenericAlias):
params.extend(p.__args__)
else:
params.append(p)
return tuple(params)
_cleanups = []
def _tp_cache(func=None, /, *, typed=False):
"""Internal wrapper caching __getitem__ of generic types with a fallback to
original function for non-hashable arguments.
"""
def decorator(func):
cached = functools.lru_cache(typed=typed)(func)
_cleanups.append(cached.cache_clear)
@functools.wraps(func)
def inner(*args, **kwds):
try:
return cached(*args, **kwds)
except TypeError:
pass # All real errors (not unhashable args) are raised below.
return func(*args, **kwds)
return inner
if func is not None:
return decorator(func)
return decorator
def _eval_type(t, globalns, localns, recursive_guard=frozenset()):
"""Evaluate all forward references in the given type t.
For use of globalns and localns see the docstring for get_type_hints().
recursive_guard is used to prevent prevent infinite recursion
with recursive ForwardRef.
"""
if isinstance(t, ForwardRef):
return t._evaluate(globalns, localns, recursive_guard)
if isinstance(t, (_GenericAlias, GenericAlias)):
ev_args = tuple(_eval_type(a, globalns, localns, recursive_guard) for a in t.__args__)
if ev_args == t.__args__:
return t
if isinstance(t, GenericAlias):
return GenericAlias(t.__origin__, ev_args)
else:
return t.copy_with(ev_args)
return t
class _Final:
"""Mixin to prohibit subclassing"""
__slots__ = ('__weakref__',)
def __init_subclass__(self, /, *args, **kwds):
if '_root' not in kwds:
raise TypeError("Cannot subclass special typing classes")
class _Immutable:
"""Mixin to indicate that object should not be copied."""
__slots__ = ()
def __copy__(self):
return self
def __deepcopy__(self, memo):
return self
# Internal indicator of special typing constructs.
# See __doc__ instance attribute for specific docs.
class _SpecialForm(_Final, _root=True):
__slots__ = ('_name', '__doc__', '_getitem')
def __init__(self, getitem):
self._getitem = getitem
self._name = getitem.__name__
self.__doc__ = getitem.__doc__
def __mro_entries__(self, bases):
raise TypeError(f"Cannot subclass {self!r}")
def __repr__(self):
return 'typing.' + self._name
def __reduce__(self):
return self._name
def __call__(self, *args, **kwds):
raise TypeError(f"Cannot instantiate {self!r}")
def __instancecheck__(self, obj):
raise TypeError(f"{self} cannot be used with isinstance()")
def __subclasscheck__(self, cls):
raise TypeError(f"{self} cannot be used with issubclass()")
@_tp_cache
def __getitem__(self, parameters):
return self._getitem(self, parameters)
class _LiteralSpecialForm(_SpecialForm, _root=True):
def __getitem__(self, parameters):
if not isinstance(parameters, tuple):
parameters = (parameters,)
return self._getitem(self, *parameters)
@_SpecialForm
def Any(self, parameters):
"""Special type indicating an unconstrained type.
- Any is compatible with every type.
- Any assumed to have all methods.
- All values assumed to be instances of Any.
Note that all the above statements are true from the point of view of
static type checkers. At runtime, Any should not be used with instance
or class checks.
"""
raise TypeError(f"{self} is not subscriptable")
@_SpecialForm
def NoReturn(self, parameters):
"""Special type indicating functions that never return.
Example::
from typing import NoReturn
def stop() -> NoReturn:
raise Exception('no way')
This type is invalid in other positions, e.g., ``List[NoReturn]``
will fail in static type checkers.
"""
raise TypeError(f"{self} is not subscriptable")
@_SpecialForm
def ClassVar(self, parameters):
"""Special type construct to mark class variables.
An annotation wrapped in ClassVar indicates that a given
attribute is intended to be used as a class variable and
should not be set on instances of that class. Usage::
class Starship:
stats: ClassVar[Dict[str, int]] = {} # class variable
damage: int = 10 # instance variable
ClassVar accepts only types and cannot be further subscribed.
Note that ClassVar is not a class itself, and should not
be used with isinstance() or issubclass().
"""
item = _type_check(parameters, f'{self} accepts only single type.')
return _GenericAlias(self, (item,))
@_SpecialForm
def Final(self, parameters):
"""Special typing construct to indicate final names to type checkers.
A final name cannot be re-assigned or overridden in a subclass.
For example:
MAX_SIZE: Final = 9000
MAX_SIZE += 1 # Error reported by type checker
class Connection:
TIMEOUT: Final[int] = 10
class FastConnector(Connection):
TIMEOUT = 1 # Error reported by type checker
There is no runtime checking of these properties.
"""
item = _type_check(parameters, f'{self} accepts only single type.')
return _GenericAlias(self, (item,))
@_SpecialForm
def Union(self, parameters):
"""Union type; Union[X, Y] means either X or Y.
To define a union, use e.g. Union[int, str]. Details:
- The arguments must be types and there must be at least one.
- None as an argument is a special case and is replaced by
type(None).
- Unions of unions are flattened, e.g.::
Union[Union[int, str], float] == Union[int, str, float]
- Unions of a single argument vanish, e.g.::
Union[int] == int # The constructor actually returns int
- Redundant arguments are skipped, e.g.::
Union[int, str, int] == Union[int, str]
- When comparing unions, the argument order is ignored, e.g.::
Union[int, str] == Union[str, int]
- You cannot subclass or instantiate a union.
- You can use Optional[X] as a shorthand for Union[X, None].
"""
if parameters == ():
raise TypeError("Cannot take a Union of no types.")
if not isinstance(parameters, tuple):
parameters = (parameters,)
msg = "Union[arg, ...]: each arg must be a type."
parameters = tuple(_type_check(p, msg) for p in parameters)
parameters = _remove_dups_flatten(parameters)
if len(parameters) == 1:
return parameters[0]
return _UnionGenericAlias(self, parameters)
@_SpecialForm
def Optional(self, parameters):
"""Optional type.
Optional[X] is equivalent to Union[X, None].
"""
arg = _type_check(parameters, f"{self} requires a single type.")
return Union[arg, type(None)]
@_LiteralSpecialForm
@_tp_cache(typed=True)
def Literal(self, *parameters):
"""Special typing form to define literal types (a.k.a. value types).
This form can be used to indicate to type checkers that the corresponding
variable or function parameter has a value equivalent to the provided
literal (or one of several literals):
def validate_simple(data: Any) -> Literal[True]: # always returns True
...
MODE = Literal['r', 'rb', 'w', 'wb']
def open_helper(file: str, mode: MODE) -> str:
...
open_helper('/some/path', 'r') # Passes type check
open_helper('/other/path', 'typo') # Error in type checker
Literal[...] cannot be subclassed. At runtime, an arbitrary value
is allowed as type argument to Literal[...], but type checkers may
impose restrictions.
"""
# There is no '_type_check' call because arguments to Literal[...] are
# values, not types.
parameters = _flatten_literal_params(parameters)
try:
parameters = tuple(p for p, _ in _deduplicate(list(_value_and_type_iter(parameters))))
except TypeError: # unhashable parameters
pass
return _LiteralGenericAlias(self, parameters)
class ForwardRef(_Final, _root=True):
"""Internal wrapper to hold a forward reference."""
__slots__ = ('__forward_arg__', '__forward_code__',
'__forward_evaluated__', '__forward_value__',
'__forward_is_argument__', '__forward_is_class__',
'__forward_module__')
def __init__(self, arg, is_argument=True, module=None, *, is_class=False):
if not isinstance(arg, str):
raise TypeError(f"Forward reference must be a string -- got {arg!r}")
try:
code = compile(arg, '<string>', 'eval')
except SyntaxError:
raise SyntaxError(f"Forward reference must be an expression -- got {arg!r}")
self.__forward_arg__ = arg
self.__forward_code__ = code
self.__forward_evaluated__ = False
self.__forward_value__ = None
self.__forward_is_argument__ = is_argument
self.__forward_is_class__ = is_class
self.__forward_module__ = module
def _evaluate(self, globalns, localns, recursive_guard):
if self.__forward_arg__ in recursive_guard:
return self
if not self.__forward_evaluated__ or localns is not globalns:
if globalns is None and localns is None:
globalns = localns = {}
elif globalns is None:
globalns = localns
elif localns is None:
localns = globalns
if self.__forward_module__ is not None:
globalns = getattr(
sys.modules.get(self.__forward_module__, None), '__dict__', globalns
)
type_ = _type_check(
eval(self.__forward_code__, globalns, localns),
"Forward references must evaluate to types.",
is_argument=self.__forward_is_argument__,
is_class=self.__forward_is_class__,
)
self.__forward_value__ = _eval_type(
type_, globalns, localns, recursive_guard | {self.__forward_arg__}
)
self.__forward_evaluated__ = True
return self.__forward_value__
def __eq__(self, other):
if not isinstance(other, ForwardRef):
return NotImplemented
if self.__forward_evaluated__ and other.__forward_evaluated__:
return (self.__forward_arg__ == other.__forward_arg__ and
self.__forward_value__ == other.__forward_value__)
return self.__forward_arg__ == other.__forward_arg__
def __hash__(self):
return hash(self.__forward_arg__)
def __repr__(self):
return f'ForwardRef({self.__forward_arg__!r})'
class TypeVar(_Final, _Immutable, _root=True):
"""Type variable.
Usage::
T = TypeVar('T') # Can be anything
A = TypeVar('A', str, bytes) # Must be str or bytes
Type variables exist primarily for the benefit of static type
checkers. They serve as the parameters for generic types as well
as for generic function definitions. See class Generic for more
information on generic types. Generic functions work as follows:
def repeat(x: T, n: int) -> List[T]:
'''Return a list containing n references to x.'''
return [x]*n
def longest(x: A, y: A) -> A:
'''Return the longest of two strings.'''
return x if len(x) >= len(y) else y
The latter example's signature is essentially the overloading
of (str, str) -> str and (bytes, bytes) -> bytes. Also note
that if the arguments are instances of some subclass of str,
the return type is still plain str.
At runtime, isinstance(x, T) and issubclass(C, T) will raise TypeError.
Type variables defined with covariant=True or contravariant=True
can be used to declare covariant or contravariant generic types.
See PEP 484 for more details. By default generic types are invariant
in all type variables.
Type variables can be introspected. e.g.:
T.__name__ == 'T'
T.__constraints__ == ()
T.__covariant__ == False
T.__contravariant__ = False
A.__constraints__ == (str, bytes)
Note that only type variables defined in global scope can be pickled.
"""
__slots__ = ('__name__', '__bound__', '__constraints__',
'__covariant__', '__contravariant__', '__dict__')
def __init__(self, name, *constraints, bound=None,
covariant=False, contravariant=False):
self.__name__ = name
if covariant and contravariant:
raise ValueError("Bivariant types are not supported.")
self.__covariant__ = bool(covariant)
self.__contravariant__ = bool(contravariant)
if constraints and bound is not None:
raise TypeError("Constraints cannot be combined with bound=...")
if constraints and len(constraints) == 1:
raise TypeError("A single constraint is not allowed")
msg = "TypeVar(name, constraint, ...): constraints must be types."
self.__constraints__ = tuple(_type_check(t, msg) for t in constraints)
if bound:
self.__bound__ = _type_check(bound, "Bound must be a type.")
else:
self.__bound__ = None
try:
def_mod = sys._getframe(1).f_globals.get('__name__', '__main__') # for pickling
except (AttributeError, ValueError):
def_mod = None
if def_mod != 'typing':
self.__module__ = def_mod
def __repr__(self):
if self.__covariant__:
prefix = '+'
elif self.__contravariant__:
prefix = '-'
else:
prefix = '~'
return prefix + self.__name__
def __reduce__(self):
return self.__name__
def _is_dunder(attr):
return attr.startswith('__') and attr.endswith('__')
class _BaseGenericAlias(_Final, _root=True):
"""The central part of internal API.
This represents a generic version of type 'origin' with type arguments 'params'.
There are two kind of these aliases: user defined and special. The special ones
are wrappers around builtin collections and ABCs in collections.abc. These must
have 'name' always set. If 'inst' is False, then the alias can't be instantiated,
this is used by e.g. typing.List and typing.Dict.
"""
def __init__(self, origin, *, inst=True, name=None):
self._inst = inst
self._name = name
self.__origin__ = origin
self.__slots__ = None # This is not documented.
def __call__(self, *args, **kwargs):
if not self._inst:
raise TypeError(f"Type {self._name} cannot be instantiated; "
f"use {self.__origin__.__name__}() instead")
result = self.__origin__(*args, **kwargs)
try:
result.__orig_class__ = self
except AttributeError:
pass
return result
def __mro_entries__(self, bases):
res = []
if self.__origin__ not in bases:
res.append(self.__origin__)
i = bases.index(self)
for b in bases[i+1:]:
if isinstance(b, _BaseGenericAlias) or issubclass(b, Generic):
break
else:
res.append(Generic)
return tuple(res)
def __getattr__(self, attr):
# We are careful for copy and pickle.
# Also for simplicity we just don't relay all dunder names
if '__origin__' in self.__dict__ and not _is_dunder(attr):
return getattr(self.__origin__, attr)
raise AttributeError(attr)
def __setattr__(self, attr, val):
if _is_dunder(attr) or attr in ('_name', '_inst', '_nparams'):
super().__setattr__(attr, val)
else:
setattr(self.__origin__, attr, val)
def __instancecheck__(self, obj):
return self.__subclasscheck__(type(obj))
def __subclasscheck__(self, cls):
raise TypeError("Subscripted generics cannot be used with"
" class and instance checks")
# Special typing constructs Union, Optional, Generic, Callable and Tuple
# use three special attributes for internal bookkeeping of generic types:
# * __parameters__ is a tuple of unique free type parameters of a generic
# type, for example, Dict[T, T].__parameters__ == (T,);
# * __origin__ keeps a reference to a type that was subscripted,
# e.g., Union[T, int].__origin__ == Union, or the non-generic version of
# the type.
# * __args__ is a tuple of all arguments used in subscripting,
# e.g., Dict[T, int].__args__ == (T, int).
class _GenericAlias(_BaseGenericAlias, _root=True):
def __init__(self, origin, params, *, inst=True, name=None):
super().__init__(origin, inst=inst, name=name)
if not isinstance(params, tuple):
params = (params,)
self.__args__ = tuple(... if a is _TypingEllipsis else
() if a is _TypingEmpty else
a for a in params)
self.__parameters__ = _collect_type_vars(params)
if not name:
self.__module__ = origin.__module__
def __eq__(self, other):
if not isinstance(other, _GenericAlias):
return NotImplemented
return (self.__origin__ == other.__origin__
and self.__args__ == other.__args__)
def __hash__(self):
return hash((self.__origin__, self.__args__))
@_tp_cache
def __getitem__(self, params):
if self.__origin__ in (Generic, Protocol):
# Can't subscript Generic[...] or Protocol[...].
raise TypeError(f"Cannot subscript already-subscripted {self}")
if not isinstance(params, tuple):
params = (params,)
msg = "Parameters to generic types must be types."
params = tuple(_type_check(p, msg) for p in params)
_check_generic(self, params, len(self.__parameters__))
subst = dict(zip(self.__parameters__, params))
new_args = []
for arg in self.__args__:
if isinstance(arg, TypeVar):
arg = subst[arg]
elif isinstance(arg, (_GenericAlias, GenericAlias)):
subparams = arg.__parameters__
if subparams:
subargs = tuple(subst[x] for x in subparams)
arg = arg[subargs]
new_args.append(arg)
return self.copy_with(tuple(new_args))
def copy_with(self, params):
return self.__class__(self.__origin__, params, name=self._name, inst=self._inst)
def __repr__(self):
if self._name:
name = 'typing.' + self._name
else:
name = _type_repr(self.__origin__)
args = ", ".join([_type_repr(a) for a in self.__args__])
return f'{name}[{args}]'
def __reduce__(self):
if self._name:
origin = globals()[self._name]
else:
origin = self.__origin__
args = tuple(self.__args__)
if len(args) == 1 and not isinstance(args[0], tuple):
args, = args
return operator.getitem, (origin, args)
def __mro_entries__(self, bases):
if self._name: # generic version of an ABC or built-in class
return super().__mro_entries__(bases)
if self.__origin__ is Generic:
if Protocol in bases:
return ()
i = bases.index(self)
for b in bases[i+1:]:
if isinstance(b, _BaseGenericAlias) and b is not self:
return ()
return (self.__origin__,)
# _nparams is the number of accepted parameters, e.g. 0 for Hashable,
# 1 for List and 2 for Dict. It may be -1 if variable number of
# parameters are accepted (needs custom __getitem__).
class _SpecialGenericAlias(_BaseGenericAlias, _root=True):
def __init__(self, origin, nparams, *, inst=True, name=None):
if name is None:
name = origin.__name__
super().__init__(origin, inst=inst, name=name)
self._nparams = nparams
if origin.__module__ == 'builtins':
self.__doc__ = f'A generic version of {origin.__qualname__}.'
else:
self.__doc__ = f'A generic version of {origin.__module__}.{origin.__qualname__}.'
@_tp_cache
def __getitem__(self, params):
if not isinstance(params, tuple):
params = (params,)
msg = "Parameters to generic types must be types."
params = tuple(_type_check(p, msg) for p in params)
_check_generic(self, params, self._nparams)
return self.copy_with(params)
def copy_with(self, params):
return _GenericAlias(self.__origin__, params,
name=self._name, inst=self._inst)
def __repr__(self):
return 'typing.' + self._name
def __subclasscheck__(self, cls):
if isinstance(cls, _SpecialGenericAlias):
return issubclass(cls.__origin__, self.__origin__)
if not isinstance(cls, _GenericAlias):
return issubclass(cls, self.__origin__)
return super().__subclasscheck__(cls)
def __reduce__(self):
return self._name
class _CallableGenericAlias(_GenericAlias, _root=True):
def __repr__(self):
assert self._name == 'Callable'
if len(self.__args__) == 2 and self.__args__[0] is Ellipsis:
return super().__repr__()
return (f'typing.Callable'
f'[[{", ".join([_type_repr(a) for a in self.__args__[:-1]])}], '
f'{_type_repr(self.__args__[-1])}]')
def __reduce__(self):
args = self.__args__
if not (len(args) == 2 and args[0] is ...):
args = list(args[:-1]), args[-1]
return operator.getitem, (Callable, args)
class _CallableType(_SpecialGenericAlias, _root=True):
def copy_with(self, params):
return _CallableGenericAlias(self.__origin__, params,
name=self._name, inst=self._inst)
def __getitem__(self, params):
if not isinstance(params, tuple) or len(params) != 2:
raise TypeError("Callable must be used as "
"Callable[[arg, ...], result].")
args, result = params
# This relaxes what args can be on purpose to allow things like
# PEP 612 ParamSpec. Responsibility for whether a user is using
# Callable[...] properly is deferred to static type checkers.
if isinstance(args, list):
params = (tuple(args), result)
else:
params = (args, result)
return self.__getitem_inner__(params)
@_tp_cache
def __getitem_inner__(self, params):
args, result = params
msg = "Callable[args, result]: result must be a type."
result = _type_check(result, msg)
if args is Ellipsis:
return self.copy_with((_TypingEllipsis, result))
if not isinstance(args, tuple):
args = (args,)
args = tuple(_type_convert(arg) for arg in args)
params = args + (result,)
return self.copy_with(params)
class _TupleType(_SpecialGenericAlias, _root=True):
@_tp_cache
def __getitem__(self, params):
if params == ():
return self.copy_with((_TypingEmpty,))
if not isinstance(params, tuple):
params = (params,)
if len(params) == 2 and params[1] is ...:
msg = "Tuple[t, ...]: t must be a type."
p = _type_check(params[0], msg)
return self.copy_with((p, _TypingEllipsis))
msg = "Tuple[t0, t1, ...]: each t must be a type."
params = tuple(_type_check(p, msg) for p in params)
return self.copy_with(params)
class _UnionGenericAlias(_GenericAlias, _root=True):
def copy_with(self, params):
return Union[params]
def __eq__(self, other):
if not isinstance(other, _UnionGenericAlias):
return NotImplemented
return set(self.__args__) == set(other.__args__)
def __hash__(self):
return hash(frozenset(self.__args__))
def __repr__(self):
args = self.__args__
if len(args) == 2:
if args[0] is type(None):
return f'typing.Optional[{_type_repr(args[1])}]'
elif args[1] is type(None):
return f'typing.Optional[{_type_repr(args[0])}]'
return super().__repr__()
def _value_and_type_iter(parameters):
return ((p, type(p)) for p in parameters)
class _LiteralGenericAlias(_GenericAlias, _root=True):
def __eq__(self, other):
if not isinstance(other, _LiteralGenericAlias):
return NotImplemented
return set(_value_and_type_iter(self.__args__)) == set(_value_and_type_iter(other.__args__))
def __hash__(self):
return hash(frozenset(_value_and_type_iter(self.__args__)))
class Generic:
"""Abstract base class for generic types.
A generic type is typically declared by inheriting from
this class parameterized with one or more type variables.
For example, a generic mapping type might be defined as::
class Mapping(Generic[KT, VT]):
def __getitem__(self, key: KT) -> VT:
...
# Etc.
This class can then be used as follows::
def lookup_name(mapping: Mapping[KT, VT], key: KT, default: VT) -> VT:
try:
return mapping[key]
except KeyError:
return default
"""
__slots__ = ()
_is_protocol = False
@_tp_cache
def __class_getitem__(cls, params):
if not isinstance(params, tuple):
params = (params,)
if not params and cls is not Tuple:
raise TypeError(
f"Parameter list to {cls.__qualname__}[...] cannot be empty")
msg = "Parameters to generic types must be types."
params = tuple(_type_check(p, msg) for p in params)
if cls in (Generic, Protocol):
# Generic and Protocol can only be subscripted with unique type variables.
if not all(isinstance(p, TypeVar) for p in params):
raise TypeError(
f"Parameters to {cls.__name__}[...] must all be type variables")
if len(set(params)) != len(params):
raise TypeError(
f"Parameters to {cls.__name__}[...] must all be unique")
else:
# Subscripting a regular Generic subclass.
_check_generic(cls, params, len(cls.__parameters__))
return _GenericAlias(cls, params)
def __init_subclass__(cls, *args, **kwargs):
super().__init_subclass__(*args, **kwargs)
tvars = []
if '__orig_bases__' in cls.__dict__:
error = Generic in cls.__orig_bases__
else:
error = Generic in cls.__bases__ and cls.__name__ != 'Protocol'
if error:
raise TypeError("Cannot inherit from plain Generic")
if '__orig_bases__' in cls.__dict__:
tvars = _collect_type_vars(cls.__orig_bases__)
# Look for Generic[T1, ..., Tn].
# If found, tvars must be a subset of it.
# If not found, tvars is it.
# Also check for and reject plain Generic,
# and reject multiple Generic[...].
gvars = None
for base in cls.__orig_bases__:
if (isinstance(base, _GenericAlias) and
base.__origin__ is Generic):
if gvars is not None:
raise TypeError(
"Cannot inherit from Generic[...] multiple types.")
gvars = base.__parameters__
if gvars is not None:
tvarset = set(tvars)
gvarset = set(gvars)
if not tvarset <= gvarset:
s_vars = ', '.join(str(t) for t in tvars if t not in gvarset)
s_args = ', '.join(str(g) for g in gvars)
raise TypeError(f"Some type variables ({s_vars}) are"
f" not listed in Generic[{s_args}]")
tvars = gvars
cls.__parameters__ = tuple(tvars)
class _TypingEmpty:
"""Internal placeholder for () or []. Used by TupleMeta and CallableMeta
to allow empty list/tuple in specific places, without allowing them
to sneak in where prohibited.
"""
class _TypingEllipsis:
"""Internal placeholder for ... (ellipsis)."""
_TYPING_INTERNALS = ['__parameters__', '__orig_bases__', '__orig_class__',
'_is_protocol', '_is_runtime_protocol']
_SPECIAL_NAMES = ['__abstractmethods__', '__annotations__', '__dict__', '__doc__',
'__init__', '__module__', '__new__', '__slots__',
'__subclasshook__', '__weakref__', '__class_getitem__']
# These special attributes will be not collected as protocol members.
EXCLUDED_ATTRIBUTES = _TYPING_INTERNALS + _SPECIAL_NAMES + ['_MutableMapping__marker']
def _get_protocol_attrs(cls):
"""Collect protocol members from a protocol class objects.
This includes names actually defined in the class dictionary, as well
as names that appear in annotations. Special names (above) are skipped.
"""
attrs = set()
for base in cls.__mro__[:-1]: # without object
if base.__name__ in ('Protocol', 'Generic'):
continue
annotations = getattr(base, '__annotations__', {})
for attr in list(base.__dict__.keys()) + list(annotations.keys()):
if not attr.startswith('_abc_') and attr not in EXCLUDED_ATTRIBUTES:
attrs.add(attr)
return attrs
def _is_callable_members_only(cls):
# PEP 544 prohibits using issubclass() with protocols that have non-method members.
return all(callable(getattr(cls, attr, None)) for attr in _get_protocol_attrs(cls))
def _no_init_or_replace_init(self, *args, **kwargs):
cls = type(self)
if cls._is_protocol:
raise TypeError('Protocols cannot be instantiated')
# Already using a custom `__init__`. No need to calculate correct
# `__init__` to call. This can lead to RecursionError. See bpo-45121.
if cls.__init__ is not _no_init_or_replace_init:
return
# Initially, `__init__` of a protocol subclass is set to `_no_init_or_replace_init`.
# The first instantiation of the subclass will call `_no_init_or_replace_init` which
# searches for a proper new `__init__` in the MRO. The new `__init__`
# replaces the subclass' old `__init__` (ie `_no_init_or_replace_init`). Subsequent
# instantiation of the protocol subclass will thus use the new
# `__init__` and no longer call `_no_init_or_replace_init`.
for base in cls.__mro__:
init = base.__dict__.get('__init__', _no_init_or_replace_init)
if init is not _no_init_or_replace_init:
cls.__init__ = init
break
else:
# should not happen
cls.__init__ = object.__init__
cls.__init__(self, *args, **kwargs)
def _allow_reckless_class_cheks():
"""Allow instance and class checks for special stdlib modules.
The abc and functools modules indiscriminately call isinstance() and
issubclass() on the whole MRO of a user class, which may contain protocols.
"""
try:
return sys._getframe(3).f_globals['__name__'] in ['abc', 'functools']
except (AttributeError, ValueError): # For platforms without _getframe().
return True
_PROTO_WHITELIST = {
'collections.abc': [
'Callable', 'Awaitable', 'Iterable', 'Iterator', 'AsyncIterable',
'Hashable', 'Sized', 'Container', 'Collection', 'Reversible',
],
'contextlib': ['AbstractContextManager', 'AbstractAsyncContextManager'],
}
class _ProtocolMeta(ABCMeta):
# This metaclass is really unfortunate and exists only because of
# the lack of __instancehook__.
def __instancecheck__(cls, instance):
# We need this method for situations where attributes are
# assigned in __init__.
if ((not getattr(cls, '_is_protocol', False) or
_is_callable_members_only(cls)) and
issubclass(instance.__class__, cls)):
return True
if cls._is_protocol:
if all(hasattr(instance, attr) and
# All *methods* can be blocked by setting them to None.
(not callable(getattr(cls, attr, None)) or
getattr(instance, attr) is not None)
for attr in _get_protocol_attrs(cls)):
return True
return super().__instancecheck__(instance)
class Protocol(Generic, metaclass=_ProtocolMeta):
"""Base class for protocol classes.
Protocol classes are defined as::
class Proto(Protocol):
def meth(self) -> int:
...
Such classes are primarily used with static type checkers that recognize
structural subtyping (static duck-typing), for example::
class C:
def meth(self) -> int:
return 0
def func(x: Proto) -> int:
return x.meth()
func(C()) # Passes static type check
See PEP 544 for details. Protocol classes decorated with
@typing.runtime_checkable act as simple-minded runtime protocols that check
only the presence of given attributes, ignoring their type signatures.
Protocol classes can be generic, they are defined as::
class GenProto(Protocol[T]):
def meth(self) -> T:
...
"""
__slots__ = ()
_is_protocol = True
_is_runtime_protocol = False
def __init_subclass__(cls, *args, **kwargs):
super().__init_subclass__(*args, **kwargs)
# Determine if this is a protocol or a concrete subclass.
if not cls.__dict__.get('_is_protocol', False):
cls._is_protocol = any(b is Protocol for b in cls.__bases__)
# Set (or override) the protocol subclass hook.
def _proto_hook(other):
if not cls.__dict__.get('_is_protocol', False):
return NotImplemented
# First, perform various sanity checks.
if not getattr(cls, '_is_runtime_protocol', False):
if _allow_reckless_class_cheks():
return NotImplemented
raise TypeError("Instance and class checks can only be used with"
" @runtime_checkable protocols")
if not _is_callable_members_only(cls):
if _allow_reckless_class_cheks():
return NotImplemented
raise TypeError("Protocols with non-method members"
" don't support issubclass()")
if not isinstance(other, type):
# Same error message as for issubclass(1, int).
raise TypeError('issubclass() arg 1 must be a class')
# Second, perform the actual structural compatibility check.
for attr in _get_protocol_attrs(cls):
for base in other.__mro__:
# Check if the members appears in the class dictionary...
if attr in base.__dict__:
if base.__dict__[attr] is None:
return NotImplemented
break
# ...or in annotations, if it is a sub-protocol.
annotations = getattr(base, '__annotations__', {})
if (isinstance(annotations, collections.abc.Mapping) and
attr in annotations and
issubclass(other, Generic) and other._is_protocol):
break
else:
return NotImplemented
return True
if '__subclasshook__' not in cls.__dict__:
cls.__subclasshook__ = _proto_hook
# We have nothing more to do for non-protocols...
if not cls._is_protocol:
return
# ... otherwise check consistency of bases, and prohibit instantiation.
for base in cls.__bases__:
if not (base in (object, Generic) or
base.__module__ in _PROTO_WHITELIST and
base.__name__ in _PROTO_WHITELIST[base.__module__] or
issubclass(base, Generic) and base._is_protocol):
raise TypeError('Protocols can only inherit from other'
' protocols, got %r' % base)
cls.__init__ = _no_init_or_replace_init
class _AnnotatedAlias(_GenericAlias, _root=True):
"""Runtime representation of an annotated type.
At its core 'Annotated[t, dec1, dec2, ...]' is an alias for the type 't'
with extra annotations. The alias behaves like a normal typing alias,
instantiating is the same as instantiating the underlying type, binding
it to types is also the same.
"""
def __init__(self, origin, metadata):
if isinstance(origin, _AnnotatedAlias):
metadata = origin.__metadata__ + metadata
origin = origin.__origin__
super().__init__(origin, origin)
self.__metadata__ = metadata
def copy_with(self, params):
assert len(params) == 1
new_type = params[0]
return _AnnotatedAlias(new_type, self.__metadata__)
def __repr__(self):
return "typing.Annotated[{}, {}]".format(
_type_repr(self.__origin__),
", ".join(repr(a) for a in self.__metadata__)
)
def __reduce__(self):
return operator.getitem, (
Annotated, (self.__origin__,) + self.__metadata__
)
def __eq__(self, other):
if not isinstance(other, _AnnotatedAlias):
return NotImplemented
return (self.__origin__ == other.__origin__
and self.__metadata__ == other.__metadata__)
def __hash__(self):
return hash((self.__origin__, self.__metadata__))
class Annotated:
"""Add context specific metadata to a type.
Example: Annotated[int, runtime_check.Unsigned] indicates to the
hypothetical runtime_check module that this type is an unsigned int.
Every other consumer of this type can ignore this metadata and treat
this type as int.
The first argument to Annotated must be a valid type.
Details:
- It's an error to call `Annotated` with less than two arguments.
- Nested Annotated are flattened::
Annotated[Annotated[T, Ann1, Ann2], Ann3] == Annotated[T, Ann1, Ann2, Ann3]
- Instantiating an annotated type is equivalent to instantiating the
underlying type::
Annotated[C, Ann1](5) == C(5)
- Annotated can be used as a generic type alias::
Optimized = Annotated[T, runtime.Optimize()]
Optimized[int] == Annotated[int, runtime.Optimize()]
OptimizedList = Annotated[List[T], runtime.Optimize()]
OptimizedList[int] == Annotated[List[int], runtime.Optimize()]
"""
__slots__ = ()
def __new__(cls, *args, **kwargs):
raise TypeError("Type Annotated cannot be instantiated.")
@_tp_cache
def __class_getitem__(cls, params):
if not isinstance(params, tuple) or len(params) < 2:
raise TypeError("Annotated[...] should be used "
"with at least two arguments (a type and an "
"annotation).")
msg = "Annotated[t, ...]: t must be a type."
origin = _type_check(params[0], msg)
metadata = tuple(params[1:])
return _AnnotatedAlias(origin, metadata)
def __init_subclass__(cls, *args, **kwargs):
raise TypeError(
"Cannot subclass {}.Annotated".format(cls.__module__)
)
def runtime_checkable(cls):
"""Mark a protocol class as a runtime protocol.
Such protocol can be used with isinstance() and issubclass().
Raise TypeError if applied to a non-protocol class.
This allows a simple-minded structural check very similar to
one trick ponies in collections.abc such as Iterable.
For example::
@runtime_checkable
class Closable(Protocol):
def close(self): ...
assert isinstance(open('/some/file'), Closable)
Warning: this will check only the presence of the required methods,
not their type signatures!
"""
if not issubclass(cls, Generic) or not cls._is_protocol:
raise TypeError('@runtime_checkable can be only applied to protocol classes,'
' got %r' % cls)
cls._is_runtime_protocol = True
return cls
def cast(typ, val):
"""Cast a value to a type.
This returns the value unchanged. To the type checker this
signals that the return value has the designated type, but at
runtime we intentionally don't check anything (we want this
to be as fast as possible).
"""
return val
def _get_defaults(func):
"""Internal helper to extract the default arguments, by name."""
try:
code = func.__code__
except AttributeError:
# Some built-in functions don't have __code__, __defaults__, etc.
return {}
pos_count = code.co_argcount
arg_names = code.co_varnames
arg_names = arg_names[:pos_count]
defaults = func.__defaults__ or ()
kwdefaults = func.__kwdefaults__
res = dict(kwdefaults) if kwdefaults else {}
pos_offset = pos_count - len(defaults)
for name, value in zip(arg_names[pos_offset:], defaults):
assert name not in res
res[name] = value
return res
_allowed_types = (types.FunctionType, types.BuiltinFunctionType,
types.MethodType, types.ModuleType,
WrapperDescriptorType, MethodWrapperType, MethodDescriptorType)
def get_type_hints(obj, globalns=None, localns=None, include_extras=False):
"""Return type hints for an object.
This is often the same as obj.__annotations__, but it handles
forward references encoded as string literals, adds Optional[t] if a
default value equal to None is set and recursively replaces all
'Annotated[T, ...]' with 'T' (unless 'include_extras=True').
The argument may be a module, class, method, or function. The annotations
are returned as a dictionary. For classes, annotations include also
inherited members.
TypeError is raised if the argument is not of a type that can contain
annotations, and an empty dictionary is returned if no annotations are
present.
BEWARE -- the behavior of globalns and localns is counterintuitive
(unless you are familiar with how eval() and exec() work). The
search order is locals first, then globals.
- If no dict arguments are passed, an attempt is made to use the
globals from obj (or the respective module's globals for classes),
and these are also used as the locals. If the object does not appear
to have globals, an empty dictionary is used.
- If one dict argument is passed, it is used for both globals and
locals.
- If two dict arguments are passed, they specify globals and
locals, respectively.
"""
if getattr(obj, '__no_type_check__', None):
return {}
# Classes require a special treatment.
if isinstance(obj, type):
hints = {}
for base in reversed(obj.__mro__):
if globalns is None:
base_globals = sys.modules[base.__module__].__dict__
else:
base_globals = globalns
ann = base.__dict__.get('__annotations__', {})
for name, value in ann.items():
if value is None:
value = type(None)
if isinstance(value, str):
value = ForwardRef(value, is_argument=False, is_class=True)
value = _eval_type(value, base_globals, localns)
hints[name] = value
return hints if include_extras else {k: _strip_annotations(t) for k, t in hints.items()}
if globalns is None:
if isinstance(obj, types.ModuleType):
globalns = obj.__dict__
else:
nsobj = obj
# Find globalns for the unwrapped object.
while hasattr(nsobj, '__wrapped__'):
nsobj = nsobj.__wrapped__
globalns = getattr(nsobj, '__globals__', {})
if localns is None:
localns = globalns
elif localns is None:
localns = globalns
hints = getattr(obj, '__annotations__', None)
if hints is None:
# Return empty annotations for something that _could_ have them.
if isinstance(obj, _allowed_types):
return {}
else:
raise TypeError('{!r} is not a module, class, method, '
'or function.'.format(obj))
defaults = _get_defaults(obj)
hints = dict(hints)
for name, value in hints.items():
if value is None:
value = type(None)
if isinstance(value, str):
# class-level forward refs were handled above, this must be either
# a module-level annotation or a function argument annotation
value = ForwardRef(
value,
is_argument=not isinstance(obj, types.ModuleType),
is_class=False,
)
value = _eval_type(value, globalns, localns)
if name in defaults and defaults[name] is None:
value = Optional[value]
hints[name] = value
return hints if include_extras else {k: _strip_annotations(t) for k, t in hints.items()}
def _strip_annotations(t):
"""Strips the annotations from a given type.
"""
if isinstance(t, _AnnotatedAlias):
return _strip_annotations(t.__origin__)
if isinstance(t, _GenericAlias):
stripped_args = tuple(_strip_annotations(a) for a in t.__args__)
if stripped_args == t.__args__:
return t
return t.copy_with(stripped_args)
if isinstance(t, GenericAlias):
stripped_args = tuple(_strip_annotations(a) for a in t.__args__)
if stripped_args == t.__args__:
return t
return GenericAlias(t.__origin__, stripped_args)
return t
def get_origin(tp):
"""Get the unsubscripted version of a type.
This supports generic types, Callable, Tuple, Union, Literal, Final, ClassVar
and Annotated. Return None for unsupported types. Examples::
get_origin(Literal[42]) is Literal
get_origin(int) is None
get_origin(ClassVar[int]) is ClassVar
get_origin(Generic) is Generic
get_origin(Generic[T]) is Generic
get_origin(Union[T, int]) is Union
get_origin(List[Tuple[T, T]][int]) == list
"""
if isinstance(tp, _AnnotatedAlias):
return Annotated
if isinstance(tp, (_BaseGenericAlias, GenericAlias)):
return tp.__origin__
if tp is Generic:
return Generic
return None
def get_args(tp):
"""Get type arguments with all substitutions performed.
For unions, basic simplifications used by Union constructor are performed.
Examples::
get_args(Dict[str, int]) == (str, int)
get_args(int) == ()
get_args(Union[int, Union[T, int], str][int]) == (int, str)
get_args(Union[int, Tuple[T, int]][str]) == (int, Tuple[str, int])
get_args(Callable[[], T][int]) == ([], int)
"""
if isinstance(tp, _AnnotatedAlias):
return (tp.__origin__,) + tp.__metadata__
if isinstance(tp, (_GenericAlias, GenericAlias)):
res = tp.__args__
if tp.__origin__ is collections.abc.Callable and res[0] is not Ellipsis:
res = (list(res[:-1]), res[-1])
return res
return ()
def no_type_check(arg):
"""Decorator to indicate that annotations are not type hints.
The argument must be a class or function; if it is a class, it
applies recursively to all methods and classes defined in that class
(but not to methods defined in its superclasses or subclasses).
This mutates the function(s) or class(es) in place.
"""
if isinstance(arg, type):
arg_attrs = arg.__dict__.copy()
for attr, val in arg.__dict__.items():
if val in arg.__bases__ + (arg,):
arg_attrs.pop(attr)
for obj in arg_attrs.values():
if isinstance(obj, types.FunctionType):
obj.__no_type_check__ = True
if isinstance(obj, type):
no_type_check(obj)
try:
arg.__no_type_check__ = True
except TypeError: # built-in classes
pass
return arg
def no_type_check_decorator(decorator):
"""Decorator to give another decorator the @no_type_check effect.
This wraps the decorator with something that wraps the decorated
function in @no_type_check.
"""
@functools.wraps(decorator)
def wrapped_decorator(*args, **kwds):
func = decorator(*args, **kwds)
func = no_type_check(func)
return func
return wrapped_decorator
def _overload_dummy(*args, **kwds):
"""Helper for @overload to raise when called."""
raise NotImplementedError(
"You should not call an overloaded function. "
"A series of @overload-decorated functions "
"outside a stub module should always be followed "
"by an implementation that is not @overload-ed.")
def overload(func):
"""Decorator for overloaded functions/methods.
In a stub file, place two or more stub definitions for the same
function in a row, each decorated with @overload. For example:
@overload
def utf8(value: None) -> None: ...
@overload
def utf8(value: bytes) -> bytes: ...
@overload
def utf8(value: str) -> bytes: ...
In a non-stub file (i.e. a regular .py file), do the same but
follow it with an implementation. The implementation should *not*
be decorated with @overload. For example:
@overload
def utf8(value: None) -> None: ...
@overload
def utf8(value: bytes) -> bytes: ...
@overload
def utf8(value: str) -> bytes: ...
def utf8(value):
# implementation goes here
"""
return _overload_dummy
def final(f):
"""A decorator to indicate final methods and final classes.
Use this decorator to indicate to type checkers that the decorated
method cannot be overridden, and decorated class cannot be subclassed.
For example:
class Base:
@final
def done(self) -> None:
...
class Sub(Base):
def done(self) -> None: # Error reported by type checker
...
@final
class Leaf:
...
class Other(Leaf): # Error reported by type checker
...
There is no runtime checking of these properties.
"""
return f
# Some unconstrained type variables. These are used by the container types.
# (These are not for export.)
T = TypeVar('T') # Any type.
KT = TypeVar('KT') # Key type.
VT = TypeVar('VT') # Value type.
T_co = TypeVar('T_co', covariant=True) # Any type covariant containers.
V_co = TypeVar('V_co', covariant=True) # Any type covariant containers.
VT_co = TypeVar('VT_co', covariant=True) # Value type covariant containers.
T_contra = TypeVar('T_contra', contravariant=True) # Ditto contravariant.
# Internal type variable used for Type[].
CT_co = TypeVar('CT_co', covariant=True, bound=type)
# A useful type variable with constraints. This represents string types.
# (This one *is* for export!)
AnyStr = TypeVar('AnyStr', bytes, str)
# Various ABCs mimicking those in collections.abc.
_alias = _SpecialGenericAlias
Hashable = _alias(collections.abc.Hashable, 0) # Not generic.
Awaitable = _alias(collections.abc.Awaitable, 1)
Coroutine = _alias(collections.abc.Coroutine, 3)
AsyncIterable = _alias(collections.abc.AsyncIterable, 1)
AsyncIterator = _alias(collections.abc.AsyncIterator, 1)
Iterable = _alias(collections.abc.Iterable, 1)
Iterator = _alias(collections.abc.Iterator, 1)
Reversible = _alias(collections.abc.Reversible, 1)
Sized = _alias(collections.abc.Sized, 0) # Not generic.
Container = _alias(collections.abc.Container, 1)
Collection = _alias(collections.abc.Collection, 1)
Callable = _CallableType(collections.abc.Callable, 2)
Callable.__doc__ = \
"""Callable type; Callable[[int], str] is a function of (int) -> str.
The subscription syntax must always be used with exactly two
values: the argument list and the return type. The argument list
must be a list of types or ellipsis; the return type must be a single type.
There is no syntax to indicate optional or keyword arguments,
such function types are rarely used as callback types.
"""
AbstractSet = _alias(collections.abc.Set, 1, name='AbstractSet')
MutableSet = _alias(collections.abc.MutableSet, 1)
# NOTE: Mapping is only covariant in the value type.
Mapping = _alias(collections.abc.Mapping, 2)
MutableMapping = _alias(collections.abc.MutableMapping, 2)
Sequence = _alias(collections.abc.Sequence, 1)
MutableSequence = _alias(collections.abc.MutableSequence, 1)
ByteString = _alias(collections.abc.ByteString, 0) # Not generic
# Tuple accepts variable number of parameters.
Tuple = _TupleType(tuple, -1, inst=False, name='Tuple')
Tuple.__doc__ = \
"""Tuple type; Tuple[X, Y] is the cross-product type of X and Y.
Example: Tuple[T1, T2] is a tuple of two elements corresponding
to type variables T1 and T2. Tuple[int, float, str] is a tuple
of an int, a float and a string.
To specify a variable-length tuple of homogeneous type, use Tuple[T, ...].
"""
List = _alias(list, 1, inst=False, name='List')
Deque = _alias(collections.deque, 1, name='Deque')
Set = _alias(set, 1, inst=False, name='Set')
FrozenSet = _alias(frozenset, 1, inst=False, name='FrozenSet')
MappingView = _alias(collections.abc.MappingView, 1)
KeysView = _alias(collections.abc.KeysView, 1)
ItemsView = _alias(collections.abc.ItemsView, 2)
ValuesView = _alias(collections.abc.ValuesView, 1)
ContextManager = _alias(contextlib.AbstractContextManager, 1, name='ContextManager')
AsyncContextManager = _alias(contextlib.AbstractAsyncContextManager, 1, name='AsyncContextManager')
Dict = _alias(dict, 2, inst=False, name='Dict')
DefaultDict = _alias(collections.defaultdict, 2, name='DefaultDict')
OrderedDict = _alias(collections.OrderedDict, 2)
Counter = _alias(collections.Counter, 1)
ChainMap = _alias(collections.ChainMap, 2)
Generator = _alias(collections.abc.Generator, 3)
AsyncGenerator = _alias(collections.abc.AsyncGenerator, 2)
Type = _alias(type, 1, inst=False, name='Type')
Type.__doc__ = \
"""A special construct usable to annotate class objects.
For example, suppose we have the following classes::
class User: ... # Abstract base for User classes
class BasicUser(User): ...
class ProUser(User): ...
class TeamUser(User): ...
And a function that takes a class argument that's a subclass of
User and returns an instance of the corresponding class::
U = TypeVar('U', bound=User)
def new_user(user_class: Type[U]) -> U:
user = user_class()
# (Here we could write the user object to a database)
return user
joe = new_user(BasicUser)
At this point the type checker knows that joe has type BasicUser.
"""
@runtime_checkable
class SupportsInt(Protocol):
"""An ABC with one abstract method __int__."""
__slots__ = ()
@abstractmethod
def __int__(self) -> int:
pass
@runtime_checkable
class SupportsFloat(Protocol):
"""An ABC with one abstract method __float__."""
__slots__ = ()
@abstractmethod
def __float__(self) -> float:
pass
@runtime_checkable
class SupportsComplex(Protocol):
"""An ABC with one abstract method __complex__."""
__slots__ = ()
@abstractmethod
def __complex__(self) -> complex:
pass
@runtime_checkable
class SupportsBytes(Protocol):
"""An ABC with one abstract method __bytes__."""
__slots__ = ()
@abstractmethod
def __bytes__(self) -> bytes:
pass
@runtime_checkable
class SupportsIndex(Protocol):
"""An ABC with one abstract method __index__."""
__slots__ = ()
@abstractmethod
def __index__(self) -> int:
pass
@runtime_checkable
class SupportsAbs(Protocol[T_co]):
"""An ABC with one abstract method __abs__ that is covariant in its return type."""
__slots__ = ()
@abstractmethod
def __abs__(self) -> T_co:
pass
@runtime_checkable
class SupportsRound(Protocol[T_co]):
"""An ABC with one abstract method __round__ that is covariant in its return type."""
__slots__ = ()
@abstractmethod
def __round__(self, ndigits: int = 0) -> T_co:
pass
def _make_nmtuple(name, types, module, defaults = ()):
fields = [n for n, t in types]
types = {n: _type_check(t, f"field {n} annotation must be a type")
for n, t in types}
nm_tpl = collections.namedtuple(name, fields,
defaults=defaults, module=module)
nm_tpl.__annotations__ = nm_tpl.__new__.__annotations__ = types
return nm_tpl
# attributes prohibited to set in NamedTuple class syntax
_prohibited = frozenset({'__new__', '__init__', '__slots__', '__getnewargs__',
'_fields', '_field_defaults',
'_make', '_replace', '_asdict', '_source'})
_special = frozenset({'__module__', '__name__', '__annotations__'})
class NamedTupleMeta(type):
def __new__(cls, typename, bases, ns):
assert bases[0] is _NamedTuple
types = ns.get('__annotations__', {})
default_names = []
for field_name in types:
if field_name in ns:
default_names.append(field_name)
elif default_names:
raise TypeError(f"Non-default namedtuple field {field_name} "
f"cannot follow default field"
f"{'s' if len(default_names) > 1 else ''} "
f"{', '.join(default_names)}")
nm_tpl = _make_nmtuple(typename, types.items(),
defaults=[ns[n] for n in default_names],
module=ns['__module__'])
# update from user namespace without overriding special namedtuple attributes
for key in ns:
if key in _prohibited:
raise AttributeError("Cannot overwrite NamedTuple attribute " + key)
elif key not in _special and key not in nm_tpl._fields:
setattr(nm_tpl, key, ns[key])
return nm_tpl
def NamedTuple(typename, fields=None, /, **kwargs):
"""Typed version of namedtuple.
Usage in Python versions >= 3.6::
class Employee(NamedTuple):
name: str
id: int
This is equivalent to::
Employee = collections.namedtuple('Employee', ['name', 'id'])
The resulting class has an extra __annotations__ attribute, giving a
dict that maps field names to types. (The field names are also in
the _fields attribute, which is part of the namedtuple API.)
Alternative equivalent keyword syntax is also accepted::
Employee = NamedTuple('Employee', name=str, id=int)
In Python versions <= 3.5 use::
Employee = NamedTuple('Employee', [('name', str), ('id', int)])
"""
if fields is None:
fields = kwargs.items()
elif kwargs:
raise TypeError("Either list of fields or keywords"
" can be provided to NamedTuple, not both")
try:
module = sys._getframe(1).f_globals.get('__name__', '__main__')
except (AttributeError, ValueError):
module = None
return _make_nmtuple(typename, fields, module=module)
_NamedTuple = type.__new__(NamedTupleMeta, 'NamedTuple', (), {})
def _namedtuple_mro_entries(bases):
if len(bases) > 1:
raise TypeError("Multiple inheritance with NamedTuple is not supported")
assert bases[0] is NamedTuple
return (_NamedTuple,)
NamedTuple.__mro_entries__ = _namedtuple_mro_entries
class _TypedDictMeta(type):
def __new__(cls, name, bases, ns, total=True):
"""Create new typed dict class object.
This method is called when TypedDict is subclassed,
or when TypedDict is instantiated. This way
TypedDict supports all three syntax forms described in its docstring.
Subclasses and instances of TypedDict return actual dictionaries.
"""
for base in bases:
if type(base) is not _TypedDictMeta:
raise TypeError('cannot inherit from both a TypedDict type '
'and a non-TypedDict base class')
tp_dict = type.__new__(_TypedDictMeta, name, (dict,), ns)
annotations = {}
own_annotations = ns.get('__annotations__', {})
own_annotation_keys = set(own_annotations.keys())
msg = "TypedDict('Name', {f0: t0, f1: t1, ...}); each t must be a type"
own_annotations = {
n: _type_check(tp, msg, module=tp_dict.__module__)
for n, tp in own_annotations.items()
}
required_keys = set()
optional_keys = set()
for base in bases:
annotations.update(base.__dict__.get('__annotations__', {}))
required_keys.update(base.__dict__.get('__required_keys__', ()))
optional_keys.update(base.__dict__.get('__optional_keys__', ()))
annotations.update(own_annotations)
if total:
required_keys.update(own_annotation_keys)
else:
optional_keys.update(own_annotation_keys)
tp_dict.__annotations__ = annotations
tp_dict.__required_keys__ = frozenset(required_keys)
tp_dict.__optional_keys__ = frozenset(optional_keys)
if not hasattr(tp_dict, '__total__'):
tp_dict.__total__ = total
return tp_dict
__call__ = dict # static method
def __subclasscheck__(cls, other):
# Typed dicts are only for static structural subtyping.
raise TypeError('TypedDict does not support instance and class checks')
__instancecheck__ = __subclasscheck__
def TypedDict(typename, fields=None, /, *, total=True, **kwargs):
"""A simple typed namespace. At runtime it is equivalent to a plain dict.
TypedDict creates a dictionary type that expects all of its
instances to have a certain set of keys, where each key is
associated with a value of a consistent type. This expectation
is not checked at runtime but is only enforced by type checkers.
Usage::
class Point2D(TypedDict):
x: int
y: int
label: str
a: Point2D = {'x': 1, 'y': 2, 'label': 'good'} # OK
b: Point2D = {'z': 3, 'label': 'bad'} # Fails type check
assert Point2D(x=1, y=2, label='first') == dict(x=1, y=2, label='first')
The type info can be accessed via the Point2D.__annotations__ dict, and
the Point2D.__required_keys__ and Point2D.__optional_keys__ frozensets.
TypedDict supports two additional equivalent forms::
Point2D = TypedDict('Point2D', x=int, y=int, label=str)
Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': str})
By default, all keys must be present in a TypedDict. It is possible
to override this by specifying totality.
Usage::
class point2D(TypedDict, total=False):
x: int
y: int
This means that a point2D TypedDict can have any of the keys omitted.A type
checker is only expected to support a literal False or True as the value of
the total argument. True is the default, and makes all items defined in the
class body be required.
The class syntax is only supported in Python 3.6+, while two other
syntax forms work for Python 2.7 and 3.2+
"""
if fields is None:
fields = kwargs
elif kwargs:
raise TypeError("TypedDict takes either a dict or keyword arguments,"
" but not both")
ns = {'__annotations__': dict(fields)}
try:
# Setting correct module is necessary to make typed dict classes pickleable.
ns['__module__'] = sys._getframe(1).f_globals.get('__name__', '__main__')
except (AttributeError, ValueError):
pass
return _TypedDictMeta(typename, (), ns, total=total)
_TypedDict = type.__new__(_TypedDictMeta, 'TypedDict', (), {})
TypedDict.__mro_entries__ = lambda bases: (_TypedDict,)
def NewType(name, tp):
"""NewType creates simple unique types with almost zero
runtime overhead. NewType(name, tp) is considered a subtype of tp
by static type checkers. At runtime, NewType(name, tp) returns
a dummy function that simply returns its argument. Usage::
UserId = NewType('UserId', int)
def name_by_id(user_id: UserId) -> str:
...
UserId('user') # Fails type check
name_by_id(42) # Fails type check
name_by_id(UserId(42)) # OK
num = UserId(5) + 1 # type: int
"""
def new_type(x):
return x
new_type.__name__ = name
new_type.__supertype__ = tp
return new_type
# Python-version-specific alias (Python 2: unicode; Python 3: str)
Text = str
# Constant that's True when type checking, but False here.
TYPE_CHECKING = False
class IO(Generic[AnyStr]):
"""Generic base class for TextIO and BinaryIO.
This is an abstract, generic version of the return of open().
NOTE: This does not distinguish between the different possible
classes (text vs. binary, read vs. write vs. read/write,
append-only, unbuffered). The TextIO and BinaryIO subclasses
below capture the distinctions between text vs. binary, which is
pervasive in the interface; however we currently do not offer a
way to track the other distinctions in the type system.
"""
__slots__ = ()
@property
@abstractmethod
def mode(self) -> str:
pass
@property
@abstractmethod
def name(self) -> str:
pass
@abstractmethod
def close(self) -> None:
pass
@property
@abstractmethod
def closed(self) -> bool:
pass
@abstractmethod
def fileno(self) -> int:
pass
@abstractmethod
def flush(self) -> None:
pass
@abstractmethod
def isatty(self) -> bool:
pass
@abstractmethod
def read(self, n: int = -1) -> AnyStr:
pass
@abstractmethod
def readable(self) -> bool:
pass
@abstractmethod
def readline(self, limit: int = -1) -> AnyStr:
pass
@abstractmethod
def readlines(self, hint: int = -1) -> List[AnyStr]:
pass
@abstractmethod
def seek(self, offset: int, whence: int = 0) -> int:
pass
@abstractmethod
def seekable(self) -> bool:
pass
@abstractmethod
def tell(self) -> int:
pass
@abstractmethod
def truncate(self, size: int = None) -> int:
pass
@abstractmethod
def writable(self) -> bool:
pass
@abstractmethod
def write(self, s: AnyStr) -> int:
pass
@abstractmethod
def writelines(self, lines: List[AnyStr]) -> None:
pass
@abstractmethod
def __enter__(self) -> 'IO[AnyStr]':
pass
@abstractmethod
def __exit__(self, type, value, traceback) -> None:
pass
class BinaryIO(IO[bytes]):
"""Typed version of the return of open() in binary mode."""
__slots__ = ()
@abstractmethod
def write(self, s: Union[bytes, bytearray]) -> int:
pass
@abstractmethod
def __enter__(self) -> 'BinaryIO':
pass
class TextIO(IO[str]):
"""Typed version of the return of open() in text mode."""
__slots__ = ()
@property
@abstractmethod
def buffer(self) -> BinaryIO:
pass
@property
@abstractmethod
def encoding(self) -> str:
pass
@property
@abstractmethod
def errors(self) -> Optional[str]:
pass
@property
@abstractmethod
def line_buffering(self) -> bool:
pass
@property
@abstractmethod
def newlines(self) -> Any:
pass
@abstractmethod
def __enter__(self) -> 'TextIO':
pass
class io:
"""Wrapper namespace for IO generic classes."""
__all__ = ['IO', 'TextIO', 'BinaryIO']
IO = IO
TextIO = TextIO
BinaryIO = BinaryIO
io.__name__ = __name__ + '.io'
sys.modules[io.__name__] = io
Pattern = _alias(stdlib_re.Pattern, 1)
Match = _alias(stdlib_re.Match, 1)
class re:
"""Wrapper namespace for re type aliases."""
__all__ = ['Pattern', 'Match']
Pattern = Pattern
Match = Match
re.__name__ = __name__ + '.re'
sys.modules[re.__name__] = re
|